Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2015 Jun 18:9:3119-24.
doi: 10.2147/DDDT.S82938. eCollection 2015.

Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed

Affiliations
Comparative Study

Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed

Riad Agbaria et al. Drug Des Devel Ther. .

Abstract

The traditional preparation process of Nigella sativa (NS) oil starts with roasting of the seeds, an allegedly unnecessary step that was never skipped. The aims of this study were to investigate the role and boundaries of thermal processing of NS seeds in the preparation of therapeutic extracts and to elucidate the underlying mechanism. NS extracts obtained by various seed thermal processing methods were investigated in vitro for their antiproliferative activity in mouse colon carcinoma (MC38) cells and for their thymoquinone content. The effect of the different methods of thermal processing on the ability of the obtained NS oil to inhibit the nuclear factor kappa B (NF-κB) pathway was then investigated in Hodgkin's lymphoma (L428) cells. The different thermal processing protocols yielded three distinct patterns: heating the NS seeds to 50°C, 100°C, or 150°C produced oil with a strong ability to inhibit tumor cell growth; no heating or heating to 25°C had a mild antiproliferative effect; and heating to 200°C or 250°C had no effect. Similar patterns were obtained for the thymoquinone content of the corresponding oils, which showed an excellent correlation with the antiproliferative data. It is proposed that there is an oxidative transition mechanism between quinones after controlled thermal processing of the seeds. While NS oil from heated seeds delayed the expression of NF-κB transcription, non-heated seeds resulted in only 50% inhibition. The data indicate that controlled thermal processing of NS seeds (at 50°C-150°C) produces significantly higher anticancer activity associated with a higher thymoquinone oil content, and inhibits the NF-κB signaling pathway.

Keywords: NF-κB; Nigella sativa; antiproliferative effect; thermal processing; thymoquinone.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Effect of Nigella sativa oil extracted from non-heated seeds versus seeds heated to 50°C on growth rate of non-cancerous fibroblasts versus a mouse colon carcinoma (MC38) cell line. Data are presented as the mean ± standard deviation (n=4).
Figure 2
Figure 2
Effect of Nigella sativa oil extracted from seeds after different thermal processing protocols (no heating, 25°C, 50°C, 100°C, 150°C, 200°C, and 250°C for 10 minutes) on growth rate of mouse colon carcinoma (MC38) cells following 24, 48, or 72 hours of incubation. Data are presented as the mean ± standard deviation (n=4).
Figure 3
Figure 3
Effect of the different thermal processing protocols used for Nigella sativa seeds (no heating, 25°C, 50°C, 100°C, 150°C, 200°C, and 250°C for 10 minutes) on the TQ content of the corresponding oil. Data are presented as the mean ± standard deviation (n=4). Abbreviation: TQ, thymoquinone.
Figure 4
Figure 4
Correlation between effect of Nigella sativa oil on tumor cell growth rate and oil TQ content for the different thermal processing protocols used for the Nigella sativa seeds (no heating, 25°C, 50°C, 100°C, 150°C, 200°C, and 250°C for 10 minutes). Data are presented as the mean ± standard deviation (n=4). Abbreviation: TQ, thymoquinone.
Figure 5
Figure 5
Effect of Nigella sativa oil from heated (50°C) versus non-heated seeds on the NF-κB signaling pathway in Hodgkin’s lymphoma (L428) cells expressing the NF-κB luciferase reporter gene. Extract of NUP was used as positive control, and medium without additives as negative control. Data are presented as the mean ± standard deviation (n=3). Abbreviations: NUP, Nuphar Lutea plant; NF-κB, nuclear factor kappa B.
Figure 6
Figure 6
Hypothesized mechanism of transition between quinones by an oxidation process after controlled heating of Nigella sativa seeds.

References

    1. Gali-Muhtasib H, Roessner A, Schneider-Stock R. Thymoquinone: a promising anti-cancer drug from natural sources. Int J Biochem Cell Biol. 2006;38:1249–1253. - PubMed
    1. Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 2003;17:299–305. - PubMed
    1. Ait Mbarek L, Ait Mouse H, Elabbadi N, et al. Anti-tumor properties of blackseed (Nigella sativa L.) extracts. Braz J Med Biol Res. 2007;40:839–847. - PubMed
    1. Baharetha HM, Nassar ZD, Aisha AF, et al. Proapoptotic and antimetastatic properties of supercritical CO2 extract of Nigella sativa Linn. against breast cancer cells. J Med Food. 2013;16:1121–1130. - PMC - PubMed
    1. Ghosheh OA, Houdi AA, Crooks PA. High performance liquid chromatographic analysis of the pharmacologically active quinines and related compounds in the oil of the black seed (Nigella sativa L) J Pharm Biomed Anal. 1999;19:757–762. - PubMed

Publication types

MeSH terms