Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Aug;61(8):1033-48.
doi: 10.1373/clinchem.2015.241430. Epub 2015 Jun 30.

Mass spectrometric profiling of vitamin D metabolites beyond 25-hydroxyvitamin D

Affiliations
Review

Mass spectrometric profiling of vitamin D metabolites beyond 25-hydroxyvitamin D

Miriam J Müller et al. Clin Chem. 2015 Aug.

Abstract

Background: The frequency of measurements of vitamin D in the human population has significantly increased over the last decade because vitamin D has now been linked to many diseases, in addition to its established role in bone health. Usually, serum 25-hydroxyvitamin D concentrations are measured to assess the vitamin D status of individuals. Unfortunately, many studies investigating links between vitamin D and disease also use only this single metabolite. Intricate correlations with other vitamin D metabolites or dynamic effects of downstream metabolites may therefore be overlooked. Fortunately, powerful LC-MS/MS approaches have recently become available that can simultaneously quantify the concentrations of multiple vitamin D metabolites. These approaches are challenging, however, because of inherent instrumental problems with detection of vitamin D compounds and the low concentrations of the metabolites in biological fluids.

Content: This review summarizes recent mass spectrometry assays for the quantitative measurement of multiple vitamin D metabolites and their application in clinical research, with a particular focus on the low-abundance downstream metabolic species generated after the initial hydroxylation to 25-hydroxyvitamin D.

Summary: To study the pathobiological effects and function of vitamin D metabolites in disease, in particular in low-abundance species beyond 25-hydroxyvitamin D, we need to know their concentrations. Although detection of these vitamin D species is challenging, a number of recent mass spectrometry assays have successfully demonstrated that LC-MS/MS methods can quantify multiple vitamin D compounds over a wide dynamic range individually or as part of multimetabolite assays.

PubMed Disclaimer