Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep-Oct;91(5):1173-80.
doi: 10.1111/php.12487. Epub 2015 Aug 3.

DNA Ligases I and III Support Nucleotide Excision Repair in DT40 Cells with Similar Efficiency

Affiliations

DNA Ligases I and III Support Nucleotide Excision Repair in DT40 Cells with Similar Efficiency

Katja Paul-Konietzko et al. Photochem Photobiol. 2015 Sep-Oct.

Abstract

In eukaryotic cells helix-distorting DNA lesions like cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts (6-4 PPs) are efficiently removed by nucleotide excision repair (NER). NER is a multistep process where in the end, subsequent to replication over the gap, the remaining nick is sealed by a DNA ligase. Lig1 has been implicated as the major DNA ligase in NER. Recently, Lig3 has been implicated as a component of a NER subpathway that operates in dividing cells, but which becomes particularly important in nondividing cells. Here, we use DT40 cells and powerful gene targeting approaches for generating DNA ligase mutants to examine the involvement and contribution of Lig1 and Lig3 in NER using cell survival measured by colony formation, and repair kinetics of CPD by immunofluorescence microscopy and immuno-slot-blotting. Our results demonstrate an impressive and previously undocumented potential of Lig3 to substitute for Lig1 in removing helix-distorting DNA lesions by NER in proliferating cells. We show for the first time in a clean genetic background a functional redundancy in NER between Lig1 and Lig3, which appears to be cell cycle independent and which is likely to contribute to the stability of vertebrate genomes.

PubMed Disclaimer

Publication types

LinkOut - more resources