Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 23:(100):e52892.
doi: 10.3791/52892.

Establishment and Characterization of UTI and CAUTI in a Mouse Model

Affiliations

Establishment and Characterization of UTI and CAUTI in a Mouse Model

Matt S Conover et al. J Vis Exp. .

Abstract

Urinary tract infections (UTI) are highly prevalent, a significant cause of morbidity and are increasingly resistant to treatment with antibiotics. Females are disproportionately afflicted by UTI: 50% of all women will have a UTI in their lifetime. Additionally, 20-40% of these women who have an initial UTI will suffer a recurrence with some suffering frequent recurrences with serious deterioration in the quality of life, pain and discomfort, disruption of daily activities, increased healthcare costs, and few treatment options other than long-term antibiotic prophylaxis. Uropathogenic Escherichia coli (UPEC) is the primary causative agent of community acquired UTI. Catheter-associated UTI (CAUTI) is the most common hospital acquired infection accounting for a million occurrences in the US annually and dramatic healthcare costs. While UPEC is also the primary cause of CAUTI, other causative agents are of increased significance including Enterococcus faecalis. Here we utilize two well-established mouse models that recapitulate many of the clinical characteristics of these human diseases. For UTI, a C3H/HeN model recapitulates many of the features of UPEC virulence observed in humans including host responses, IBC formation and filamentation. For CAUTI, a model using C57BL/6 mice, which retain catheter bladder implants, has been shown to be susceptible to E. faecalis bladder infection. These representative models are being used to gain striking new insights into the pathogenesis of UTI disease, which is leading to the development of novel therapeutics and management or prevention strategies.

PubMed Disclaimer

References

    1. Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis Mon. 2003;49:53–70. - PubMed
    1. Foxman B, et al. Risk factors for second urinary tract infection among college women. American journal of epidemiology. 2000;151:1194–1205. - PubMed
    1. Gupta K, Hooton TM, Stamm WE. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Annals of internal medicine. 2001;135:41–50. - PubMed
    1. Gupta K, Hooton TM, Stamm WE. Isolation of fluoroquinolone-resistant rectal Escherichia coli. after treatment of acute uncomplicated cystitis. The Journal of antimicrobial chemotherapy. 2005;56:243–246. - PubMed
    1. Gupta K, Sahm DF, Mayfield D, Stamm WE. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in women: a nationwide analysis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2001;33:89–94. - PubMed

Publication types

MeSH terms