Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug;46(8):2260-70.
doi: 10.1161/STROKEAHA.114.006365. Epub 2015 Jul 2.

Therapeutically Targeting Tumor Necrosis Factor-α/Sphingosine-1-Phosphate Signaling Corrects Myogenic Reactivity in Subarachnoid Hemorrhage

Affiliations

Therapeutically Targeting Tumor Necrosis Factor-α/Sphingosine-1-Phosphate Signaling Corrects Myogenic Reactivity in Subarachnoid Hemorrhage

Kenji Yagi et al. Stroke. 2015 Aug.

Abstract

Background and purpose: Subarachnoid hemorrhage (SAH) is a complex stroke subtype characterized by an initial brain injury, followed by delayed cerebrovascular constriction and ischemia. Current therapeutic strategies nonselectively curtail exacerbated cerebrovascular constriction, which necessarily disrupts the essential and protective process of cerebral blood flow autoregulation. This study identifies a smooth muscle cell autocrine/paracrine signaling network that augments myogenic tone in a murine model of experimental SAH: it links tumor necrosis factor-α (TNFα), the cystic fibrosis transmembrane conductance regulator, and sphingosine-1-phosphate signaling.

Methods: Mouse olfactory cerebral resistance arteries were isolated, cannulated, and pressurized for in vitro vascular reactivity assessments. Cerebral blood flow was measured by speckle flowmetry and magnetic resonance imaging. Standard Western blot, immunohistochemical techniques, and neurobehavioral assessments were also used.

Results: We demonstrate that targeting TNFα and sphingosine-1-phosphate signaling in vivo has potential therapeutic application in SAH. Both interventions (1) eliminate the SAH-induced myogenic tone enhancement, but otherwise leave vascular reactivity intact; (2) ameliorate SAH-induced neuronal degeneration and apoptosis; and (3) improve neurobehavioral performance in mice with SAH. Furthermore, TNFα sequestration with etanercept normalizes cerebral perfusion in SAH.

Conclusions: Vascular smooth muscle cell TNFα and sphingosine-1-phosphate signaling significantly enhance cerebral artery tone in SAH; anti-TNFα and anti-sphingosine-1-phosphate treatment may significantly improve clinical outcome.

Keywords: inflammation; muscle, smooth, vascular; signal transduction; sphingosine kinase-1.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources