Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep;42(5):515-28.
doi: 10.1111/apt.13302. Epub 2015 Jul 6.

Chemotherapy-driven dysbiosis in the intestinal microbiome

Affiliations
Free article

Chemotherapy-driven dysbiosis in the intestinal microbiome

E Montassier et al. Aliment Pharmacol Ther. 2015 Sep.
Free article

Abstract

Background: Chemotherapy is commonly used as myeloablative conditioning treatment to prepare patients for haematopoietic stem cell transplantation (HSCT). Chemotherapy leads to several side effects, with gastrointestinal (GI) mucositis being one of the most frequent. Current models of GI mucositis pathophysiology are generally silent on the role of the intestinal microbiome.

Aim: To identify functional mechanisms by which the intestinal microbiome may play a key role in the pathophysiology of GI mucositis, we applied high-throughput DNA-sequencing analysis to identify microbes and microbial functions that are modulated following chemotherapy.

Methods: We amplified and sequenced 16S rRNA genes from faecal samples before and after chemotherapy in 28 patients with non-Hodgkin's lymphoma who received the same myeloablative conditioning regimen and no other concomitant therapy such as antibiotics.

Results: We found that faecal samples collected after chemotherapy exhibited significant decreases in abundances of Firmicutes (P = 0.0002) and Actinobacteria (P = 0.002) and significant increases in abundances of Proteobacteria (P = 0.0002) compared to samples collected before chemotherapy. Following chemotherapy, patients had reduced capacity for nucleotide metabolism (P = 0.0001), energy metabolism (P = 0.001), metabolism of cofactors and vitamins (P = 0.006), and increased capacity for glycan metabolism (P = 0.0002), signal transduction (P = 0.0002) and xenobiotics biodegradation (P = 0.002).

Conclusions: Our study identifies a severe compositional and functional imbalance in the gut microbial community associated with chemotherapy-induced GI mucositis. The functional pathways implicated in our analysis suggest potential directions for the development of intestinal microbiome-targeted interventions in cancer patients.

PubMed Disclaimer

MeSH terms