Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Aug 15:580:84-92.
doi: 10.1016/j.abb.2015.07.005. Epub 2015 Jul 4.

The role of Myc and let-7a in glioblastoma, glucose metabolism and response to therapy

Affiliations
Review

The role of Myc and let-7a in glioblastoma, glucose metabolism and response to therapy

Gang Wang et al. Arch Biochem Biophys. .

Abstract

Glioblastoma multiforme (GBM) is thought to result from an imbalance between glucose metabolism and tumor growth. The Myc oncogene and lethal-7a microRNA (let-7a miRNA) have been suggested to cooperatively regulate multiple downstream targets leading to changes in chromosome stability, gene mutations, and/or modulation of tumor growth. Here, we review the roles of Myc and let-7a in glucose metabolism and tumor growth and addresses their future potential as prognostic markers and therapeutic tools in GBM. We focus on the functions of Myc and let-7a in glucose uptake, tumor survival, proliferation, and mobility of glioma cells. In addition, we discuss how regulation of different pathways by Myc or let-7a may be useful for future GBM therapies. A large body of evidence suggests that targeting Myc and let-7a may provide a selective mechanism for the deregulation of glucose metabolic pathways in glioma cells. Indeed, Myc and let-7a are aberrantly expressed in GBM and have been linked to the regulation of cell growth and glucose metabolism in GBM. This article is part of a Special Issue entitled "Targeting alternative glucose metabolism and regulate pathways in GBM cells for future glioblastoma therapies".

Keywords: Glioblastoma; Glucose metabolism; Let-7a miRNA; Myc; Pathways; Tumor growth.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources