Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Nov;36(5):810-5.
doi: 10.1038/ki.1989.266.

Reduced renal prepro-epidermal growth factor mRNA and decreased EGF excretion in ARF

Affiliations
Free article

Reduced renal prepro-epidermal growth factor mRNA and decreased EGF excretion in ARF

R Safirstein et al. Kidney Int. 1989 Nov.
Free article

Abstract

Levels of prepro epidermal growth factor (EGF) mRNA in renal cortical tissue and urinary EGF excretion have been determined during cisplatin and ischemia-induced acute renal failure in the rat. Northern analysis of polyadenylated RNAs of kidney cortical tissue showed diminished renal preproEGF mRNA in rats injected with cisplatin (5 mg/kg). The decrease in preproEGF mRNA occurred as early as 12 hours in the kidney and persisted for at least three days after cisplatin injection. The submandibular gland, a major site of EGF synthesis, contained normal levels of preproEGF mRNA. Transplatin, a non-nephrotoxic isomer of cisplatin, did not reduce renal preproEGF mRNA levels. Northern analysis of polyadenylated RNAs of kidney cortical tissue 24 hours after a 50 minute period of renal pedicle clamping also showed reduced preproEGF mRNA levels. By contrast, cisplatin increased renal c-fos mRNA. Urinary EGF excretion was also reduced after cisplatin and ischemia and the decrease in EGF excretion correlated significantly with the degree of renal failure. The data show that nephrotoxic and ischemic renal cell injury reduces preproEGF mRNA and urinary EGF excretion. Reduced preproEGF mRNA and diminished EGF excretion may be important in the functional and regenerative responses to renal injury.

PubMed Disclaimer

LinkOut - more resources