Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep;34(9):579-87.
doi: 10.1089/dna.2015.2923. Epub 2015 Jul 8.

Combinations of gene ontology and pathway characterize and predict prognosis genes for recurrence of gastric cancer after surgery

Affiliations

Combinations of gene ontology and pathway characterize and predict prognosis genes for recurrence of gastric cancer after surgery

Haiyan Fan et al. DNA Cell Biol. 2015 Sep.

Abstract

Gastric cancer (GC) is the second leading cause of death from cancer globally. The most common cause of GC is the infection of Helicobacter pylori, but ∼11% of cases are caused by genetic factors. However, recurrences occur in approximately one-third of stage II GC patients, even if they are treated with adjuvant chemotherapy or chemoradiotherapy. This is potentially due to expression variation of genes; some candidate prognostic genes were identified in patients with high-risk recurrences. The objective of this study was to develop an effective computational method for meaningfully interpreting these GC-related genes and accurately predicting novel prognostic genes for high-risk recurrence patients. We employed properties of genes (gene ontology [GO] and KEGG pathway information) as features to characterize GC-related genes. We obtained an optimal set of features for interpreting these genes. By applying the minimum redundancy maximum relevance algorithm, we predicted the GC-related genes. With the same approach, we further predicted the genes for the prognostic of high-risk recurrence. We obtained 1104 GO terms and KEGG pathways and 530 GO terms and KEGG pathways, respectively, that characterized GC-related genes and recurrence-related genes well. Finally, three novel prognostic genes were predicted to help supplement genetic markers of high-risk GC patients for recurrence after surgery. An in-depth text mining indicated that the results are quite consistent with previous knowledge. Survival analysis of patients confirmed the novel prognostic genes as markers. By analyzing the related genes, we developed a systematic method to interpret the possible underlying mechanism of GC. The novel prognostic genes facilitate the understanding and therapy of GC recurrences after surgery.

PubMed Disclaimer

LinkOut - more resources