Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul 9;523(7559):200-3.
doi: 10.1038/nature14577.

Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean

Affiliations
Free article

Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean

Joseph A Resing et al. Nature. .
Free article

Abstract

Hydrothermal venting along mid-ocean ridges exerts an important control on the chemical composition of sea water by serving as a major source or sink for a number of trace elements in the ocean. Of these, iron has received considerable attention because of its role as an essential and often limiting nutrient for primary production in regions of the ocean that are of critical importance for the global carbon cycle. It has been thought that most of the dissolved iron discharged by hydrothermal vents is lost from solution close to ridge-axis sources and is thus of limited importance for ocean biogeochemistry. This long-standing view is challenged by recent studies which suggest that stabilization of hydrothermal dissolved iron may facilitate its long-range oceanic transport. Such transport has been subsequently inferred from spatially limited oceanographic observations. Here we report data from the US GEOTRACES Eastern Pacific Zonal Transect (EPZT) that demonstrate lateral transport of hydrothermal dissolved iron, manganese, and aluminium from the southern East Pacific Rise (SEPR) several thousand kilometres westward across the South Pacific Ocean. Dissolved iron exhibits nearly conservative (that is, no loss from solution during transport and mixing) behaviour in this hydrothermal plume, implying a greater longevity in the deep ocean than previously assumed. Based on our observations, we estimate a global hydrothermal dissolved iron input of three to four gigamoles per year to the ocean interior, which is more than fourfold higher than previous estimates. Complementary simulations with a global-scale ocean biogeochemical model suggest that the observed transport of hydrothermal dissolved iron requires some means of physicochemical stabilization and indicate that hydrothermally derived iron sustains a large fraction of Southern Ocean export production.

PubMed Disclaimer

Comment in

References

    1. Science. 1995 Aug 25;269(5227):1092-5 - PubMed
    1. Science. 1994 Feb 25;263(5150):1125-8 - PubMed
    1. Nature. 2014 Jul 10;511(7508):212-5 - PubMed
    1. Science. 1981 Oct 2;214(4516):13-8 - PubMed
    1. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16654-61 - PubMed

Publication types

LinkOut - more resources