Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Apr:116:10-22.
doi: 10.1016/j.biopsycho.2015.06.016. Epub 2015 Jul 6.

Stimulus-specific adaptation in the inferior colliculus: The role of excitatory, inhibitory and modulatory inputs

Affiliations
Review

Stimulus-specific adaptation in the inferior colliculus: The role of excitatory, inhibitory and modulatory inputs

Yaneri A Ayala et al. Biol Psychol. 2016 Apr.

Abstract

Patients suffering from pathologies such as schizophrenia, depression or dementia exhibit cognitive impairments, some of which can be reflected in event-related potential (ERP) measurements as the mismatch negativity (MMN). The MMN is one of the most commonly used ERPs and provides an electrophysiological index of auditory change or deviance detection. Moreover, MMN has been positioned as a potentially promising biomarker candidate for the diagnosis and prediction of the outcome of schizophrenia. Dysfunction of neural receptors has been linked to the etiopathology of schizophrenia or the induction of psychophysiological anomalies similar to those observed in schizophrenia. Stimulus-specific adaptation (SSA) is a neural mechanism that contributes to the upstream processing of auditory change detection. Auditory neurons that exhibit SSA specifically adapt their response to repetitive sounds but maintain their excitability to respond to rare ones. Thus, by studying the role of neuronal receptors on SSA, we can contribute to detangle the cellular bases of the impairments in deviance processing occurring in mental pathologies. Here, we review the current knowledge on the effect of GABAA-mediated inhibition and the modulation of acetylcholine on SSA in the inferior colliculus, and we add unpublished original data obtained blocking glutamate receptors. We found that the blockade of GABAA and glutamate receptors mediates an overall increase or decrease of the neural response, respectively, while acetylcholine affects only the response to the repetitive sounds. These results demonstrate that GABAergic, glutamatergic and cholinergic receptors play different and complementary roles on shaping SSA.

Keywords: Acetylcholine; Auditory; GABA; Glutamate; MMN; SSA.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources