Detection of Methicillin Resistance and Various Virulence Factors in Staphylococcus aureus Strains Isolated from Nasal Carriers
- PMID: 26167341
- PMCID: PMC4432697
- DOI: 10.5152/balkanmedj.2015.150186
Detection of Methicillin Resistance and Various Virulence Factors in Staphylococcus aureus Strains Isolated from Nasal Carriers
Abstract
Background: Staphylococus aureus can be found as a commensal on skin and nasal flora or it may cause local and invasive infections. S. aureus has a large number of virulence factors.
Aims: To investigate the methicillin resistance and frequency of various virulence factors in S. aureus nasal isolates.
Study design: Descriptive study.
Methods: Nasal samples collected from university students were cultured in media. S. aureus was identified by conventional methods and the Staphyloslide latex test (Becton Dickinson, Sparks, USA). Antibiotic susceptibility tests were conducted, and the methicillin resistance was determined. The mecA, nuc, pvl and staphylococcal toxin genes were examined by polymerase chain reaction (PCR).
Results: S. aureus was isolated in 104 of 600 (17.3%) nasal samples. In total, 101 (97.1%) S. aureus isolates were methicillin-sensitive and the remaining 3 (2.9%) were methicillin-resistant. Furthermore, all but five isolates carried at least one staphylococcal enterotoxin gene, with seg being predominant. The tst and eta genes were determined in 29 (27.9%), and 3 (2.9%) isolates, respectively. None of the S. aureus isolates harbored see, etb, and pvl genes.
Conclusion: A moderate rate of S. aureus carriage and low frequency of MRSA were detected in healthy students. S. aureus isolates had a high prevalence of staphylococcal enterotoxin genes and the tst gene. In this study, a large number of virulence factors were examined in S. aureus nasal isolates, and the data obtained from this study can be used for monitoring the prevalence of virulence genes in S. aureus strains isolated from nasal carriers.
Keywords: Methicillin resistance; Staphylococcus aureus; virulence factors.
References
-
- Miller LG, Perdreau-Remington F, Rieg G, Mehdi S, Perlroth J, Bayer AS, et al. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med. 2005;352:1445–53. - PubMed
-
- Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5:751–62. - PubMed
-
- van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J, Nouwen JL, et al. Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis. 2009;199:1820–6. - PubMed
-
- von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med. 2001;344:11–6. - PubMed
-
- Rebollo-Perez J, Ordonez-Tapia S, Herazo-Herazo C, Reyes-Ramos N. Nasal carriage of Panton Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in healthy preschool children. Rev Salud Publica (Bogota) 2011;13:824–32. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous