Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul 13;10(7):e0132227.
doi: 10.1371/journal.pone.0132227. eCollection 2015.

Measuring Compounds in Exhaled Air to Detect Alzheimer's Disease and Parkinson's Disease

Affiliations

Measuring Compounds in Exhaled Air to Detect Alzheimer's Disease and Parkinson's Disease

Jan-Philipp Bach et al. PLoS One. .

Abstract

Background: Alzheimer's disease (AD) is diagnosed based upon medical history, neuropsychiatric examination, cerebrospinal fluid analysis, extensive laboratory analyses and cerebral imaging. Diagnosis is time consuming and labour intensive. Parkinson's disease (PD) is mainly diagnosed on clinical grounds.

Objective: The primary aim of this study was to differentiate patients suffering from AD, PD and healthy controls by investigating exhaled air with the electronic nose technique. After demonstrating a difference between the three groups the secondary aim was the identification of specific substances responsible for the difference(s) using ion mobility spectroscopy. Thirdly we analysed whether amyloid beta (Aβ) in exhaled breath was causative for the observed differences between patients suffering from AD and healthy controls.

Methods: We employed novel pulmonary diagnostic tools (electronic nose device/ion-mobility spectrometry) for the identification of patients with neurodegenerative diseases. Specifically, we analysed breath pattern differences in exhaled air of patients with AD, those with PD and healthy controls using the electronic nose device (eNose). Using ion mobility spectrometry (IMS), we identified the compounds responsible for the observed differences in breath patterns. We applied ELISA technique to measure Aβ in exhaled breath condensates.

Results: The eNose was able to differentiate between AD, PD and HC correctly. Using IMS, we identified markers that could be used to differentiate healthy controls from patients with AD and PD with an accuracy of 94%. In addition, patients suffering from PD were identified with sensitivity and specificity of 100%. Altogether, 3 AD patients out of 53 participants were misclassified. Although we found Aβ in exhaled breath condensate from both AD and healthy controls, no significant differences between groups were detected.

Conclusion: These data may open a new field in the diagnosis of neurodegenerative disease such as Alzheimer's disease and Parkinson's disease. Further research is required to evaluate the significance of these pulmonary findings with respect to the pathophysiology of neurodegenerative disorders.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: JIB Baumbach is shareholder on a company (B&S Analytics) producing ion mobility spectrometers. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1
Fig 1. Linear discriminant analysis.
In Fig 1, we tested whether differentiating among patients with two neurodegenerative disorders and healthy controls is possible using the eNose. Linear discriminant analysis (LDA) was used to distinguish among groups. Repeated measurements were evaluated using median values and normalised to a range of 0 to 1. LD = linear discriminant, ad = Alzheimer's disease, pd = Parkinson's disease, hc = healthy control.
Fig 2
Fig 2. Decision tree of four variables measured using IMS.
Exhaled breath from 21 AD, 16 PD patients and 16 HC was analysed using IMS. A decision tree based on four compounds is shown in Fig 2. Samples are grouped according to the means of the peak intensity of each compound, at which point, the maximum number of samples are classified correctly. Relative numbers of classified HC are green, and numbers of classified patients with AD are red. PD is marked in blue. Total numbers of classified samples are given for each compound. P denotes the concentration of a compound. Using a decision tree with four characteristics, the method shows a accuracy of 94% when differentiating patients with AD from HC. Considering PD/AD vs. HC, sensitivity of 95% and specificity of 94%, positive predictive value of 97%, negative predictive value of 88% were calculated.

Similar articles

Cited by

References

    1. Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. The EMBO journal. 1985;4(11):2757–63. . - PMC - PubMed
    1. Cummings JL. Alzheimer's disease. N Engl J Med. 2004;351(1):56–67. . - PubMed
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263–9. 10.1016/j.jalz.2011.03.005 - DOI - PMC - PubMed
    1. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 2012;8(1 Suppl):S1–68. Epub 2011/11/04. 10.1016/j.jalz.2011.09.172 - DOI - PMC - PubMed
    1. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734–46. Epub 2007/07/10. 10.1016/s1474-4422(07)70178-3 . - DOI - PubMed

Publication types

MeSH terms