Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jun 29:8:295-302.
doi: 10.2147/DMSO.S61296. eCollection 2015.

Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome

Affiliations
Review

Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome

Caitlin J Smith et al. Diabetes Metab Syndr Obes. .

Abstract

Metabolic syndrome is a growing cause of morbidity and mortality worldwide. Metabolic syndrome is characterized by the presence of a variety of metabolic disturbances including obesity, hyperlipidemia, hypertension, and elevated fasting blood sugar. Although the risk for metabolic syndrome has largely been attributed to adult lifestyle factors such as poor nutrition, lack of exercise, and smoking, there is now strong evidence suggesting that predisposition to the development of metabolic syndrome begins in utero. First posited by Hales and Barker in 1992, the "thrifty phenotype" hypothesis proposes that susceptibility to adult chronic diseases can occur in response to exposures in the prenatal and perinatal periods. This hypothesis has been continually supported by epidemiologic studies and studies involving animal models. In this review, we describe the structural, metabolic and epigenetic changes that occur in response to adverse intrauterine environments including prenatal and postnatal diet, maternal obesity, and pregnancy complications. Given the increasing prevalence of metabolic syndrome in both the developed and developing worlds, a greater understanding and appreciation for the role of the intrauterine environment in adult chronic disease etiology is imperative.

Keywords: epigenetics; fetal programming; maternal; metabolic syndrome; pregnancy complications.

PubMed Disclaimer

References

    1. Tobi EW, Goeman JJ, Monajemi R, et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun. 2014;5:5592. - PMC - PubMed
    1. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595–601. - PubMed
    1. Alsnes IV, Janszky I, Forman MR, Vatten LJ, Okland I. A population-based study of associations between preeclampsia and later cardiovascular risk factors. Am J Obstet Gynecol. 2014;211(6):657. e1–e7. - PubMed
    1. Barker DJ, Martyn CN, Osmond C, Hales CN, Fall CH. Growth in utero and serum cholesterol concentrations in adult life. BMJ. 1993;307(6918):1524–1527. - PMC - PubMed
    1. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115(3):e290–e296. - PubMed