Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul 14;10(7):e0132894.
doi: 10.1371/journal.pone.0132894. eCollection 2015.

Exploring Game Performance in the National Basketball Association Using Player Tracking Data

Affiliations

Exploring Game Performance in the National Basketball Association Using Player Tracking Data

Jaime Sampaio et al. PLoS One. .

Abstract

Recent player tracking technology provides new information about basketball game performance. The aim of this study was to (i) compare the game performances of all-star and non all-star basketball players from the National Basketball Association (NBA), and (ii) describe the different basketball game performance profiles based on the different game roles. Archival data were obtained from all 2013-2014 regular season games (n = 1230). The variables analyzed included the points per game, minutes played and the game actions recorded by the player tracking system. To accomplish the first aim, the performance per minute of play was analyzed using a descriptive discriminant analysis to identify which variables best predict the all-star and non all-star playing categories. The all-star players showed slower velocities in defense and performed better in elbow touches, defensive rebounds, close touches, close points and pull-up points, possibly due to optimized attention processes that are key for perceiving the required appropriate environmental information. The second aim was addressed using a k-means cluster analysis, with the aim of creating maximal different performance profile groupings. Afterwards, a descriptive discriminant analysis identified which variables best predict the different playing clusters. The results identified different playing profile of performers, particularly related to the game roles of scoring, passing, defensive and all-round game behavior. Coaching staffs may apply this information to different players, while accounting for individual differences and functional variability, to optimize practice planning and, consequently, the game performances of individuals and teams.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Distribution from the discriminant scores across all-star players.
Fig 2
Fig 2. Distribution from the discriminant scores across non all-star players.
Fig 3
Fig 3. Territorial map from the cases and created clusters.

Similar articles

Cited by

References

    1. Gonzalez AM, Hoffman JR, Rogowski JP, Burgos W, Manalo E, Weise K, et al. Performance changes in NBA basketball players vary in starters vs. nonstarters over a competitive season. Journal of strength and conditioning research / National Strength & Conditioning Association. 2013;27(3):611–5. - PubMed
    1. Schelling X, Calleja-Gonzalez J, Torres-Ronda L, Terrados N. Using Testosterone and Cortisol as Biomarker for Training Individualization in Elite Basketball: A 4-Year Follow-up Study. Journal of strength and conditioning research / National Strength & Conditioning Association. 2015;29(2):368–78. - PubMed
    1. Gibson J. The ecological approach to visual perception Boston: Houghton Mifflin; 1979. 332 p.
    1. Savelsbergh G, Davids K, van der Kamp J, Bennett SJ. Development of Movement Coordination in Children: Applications in the Field of Ergonomics, Health Sciences and Sport: Taylor & Francis; 2013.
    1. Kauffman SA. The Origins of Order: Self Organization and Selection in Evolution: Oxford University Press; 1993.

Publication types

MeSH terms