Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul 14;113(2):299-310.
doi: 10.1038/bjc.2015.190. Epub 2015 Jun 30.

A clinically applicable molecular-based classification for endometrial cancers

Affiliations

A clinically applicable molecular-based classification for endometrial cancers

A Talhouk et al. Br J Cancer. .

Abstract

Background: Classification of endometrial carcinomas (ECs) by morphologic features is inconsistent, and yields limited prognostic and predictive information. A new system for classification based on the molecular categories identified in The Cancer Genome Atlas is proposed.

Methods: Genomic data from the Cancer Genome Atlas (TCGA) support classification of endometrial carcinomas into four prognostically significant subgroups; we used the TCGA data set to develop surrogate assays that could replicate the TCGA classification, but without the need for the labor-intensive and cost-prohibitive genomic methodology. Combinations of the most relevant assays were carried forward and tested on a new independent cohort of 152 endometrial carcinoma cases, and molecular vs clinical risk group stratification was compared.

Results: Replication of TCGA survival curves was achieved with statistical significance using multiple different molecular classification models (16 total tested). Internal validation supported carrying forward a classifier based on the following components: mismatch repair protein immunohistochemistry, POLE mutational analysis and p53 immunohistochemistry as a surrogate for 'copy-number' status. The proposed molecular classifier was associated with clinical outcomes, as was stage, grade, lymph-vascular space invasion, nodal involvement and adjuvant treatment. In multivariable analysis both molecular classification and clinical risk groups were associated with outcomes, but differed greatly in composition of cases within each category, with half of POLE and mismatch repair loss subgroups residing within the clinically defined 'high-risk' group. Combining the molecular classifier with clinicopathologic features or risk groups provided the highest C-index for discrimination of outcome survival curves.

Conclusions: Molecular classification of ECs can be achieved using clinically applicable methods on formalin-fixed paraffin-embedded samples, and provides independent prognostic information beyond established risk factors. This pragmatic molecular classification tool has potential to be used routinely in guiding treatment for individuals with endometrial carcinoma and in stratifying cases in future clinical trials.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Kaplan–Meier survival analyses and log-rank statistics of eight possible models for pragmatic molecular classification of endometrial cancers applied to the Vancouver cohort (n=143). Overall survival (OS), disease-specific survival (DSS) and recurrence-free survival (RFS) are shown for each model and molecular subgroups are distinguished by colour (POLE (blue), MMR IHC abn (yellow), p53 wt (green) and p53 abn (red)). Model 8 is outlined in red and is the model that was used for subsequent univariate and multivariate analysis, was combined with either European Society of Medical Oncologists clinical risk groups or pathological parameters.
Figure 1
Figure 1
Kaplan–Meier survival analyses and log-rank statistics of eight possible models for pragmatic molecular classification of endometrial cancers applied to the Vancouver cohort (n=143). Overall survival (OS), disease-specific survival (DSS) and recurrence-free survival (RFS) are shown for each model and molecular subgroups are distinguished by colour (POLE (blue), MMR IHC abn (yellow), p53 wt (green) and p53 abn (red)). Model 8 is outlined in red and is the model that was used for subsequent univariate and multivariate analysis, was combined with either European Society of Medical Oncologists clinical risk groups or pathological parameters.
Figure 2
Figure 2
Harrell's C-Index for Models 1 to 8, ESMO clinical risk group, and combined molecular and risk groups or pathologic parameters as applied to the Vancouver cohort (n=143). A C-index of 0.5 (dotted line) indicates that the model has no discriminative ability and a C-index of 1 indicates that a model perfectly distinguishes between those who have an event and those who do not. The pragmatic model chosen to move forward with is outlined in red. Also outlined are the indices for the molecular classifier combined with clinical risk groups or pathological parameters, suggesting an improved ability to discriminate outcomes when taken together.
Figure 3
Figure 3
Favoured pragmatic model for molecular classification of endometrial cancers (Model 8 in Figures 1 and 2). Selection was based on survival analyses, C-index, anticipated clinical benefit in order of testing, and cost and accessibility of methods.
Figure 4
Figure 4
Cross-tabulation of clinicopathologic risk groups (ESMO) with molecular classification by proposed model: MMR IHC/POLE mut/p53 IHC. Approximately half of the POLE and MMR IHC abn molecular subgroups are noted to include cases that would be designated as ‘high risk' by traditional clinical risk group stratification. The p53 abn molecular subgroup includes ∼25% ‘low' and ‘intermediate' risk cases who would usually be designated to receive minimal (e.g., vaginal brachytherapy) or no therapy. Although both molecular subgroups and clinical risk groups were associated with outcomes, they may identify different women with EC.

References

    1. Micheel CM, Nass SJ, Omenn, GS (eds) (2012) Evolution of Translational Omics: Lessons Learned and the Path Forward. Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials; Board on Health Care Services; Board on Health Sciences Policy; Institute of Medicine. National Academies Press: Washington (DC). - PubMed
    1. AlHilli MM, Mariani A, Bakkum-Gamez JN, Dowdy SC, Weaver AL, Peethambaram PP, Keeney GL, Cliby WA, Podratz KC. Risk-scoring models for individualized prediction of overall survival in low-grade and high-grade endometrial cancer. Gynecol Oncol. 2014;133 (3:485–493. - PMC - PubMed
    1. Efron B, Tibshirani R. Improvement on cross-validation: the .632+ bootstrap method. J Am Stat Assoc. 1997;92 (438:548–560.
    1. Bendifallah S, Canlorbe G, Collinet P, Arsene E, Huguet F, Coutant C, Hudry D, Graesslin O, Raimond E, Touboul C, Darai E, Ballester M. Just how accurate are the major risk stratification systems for early-stage endometrial cancer. Br J Cancer. 2015;112 (5:793–801. - PMC - PubMed
    1. Bertagnolli MM, Niedzwiecki D, Compton CC, Hahn HP, Hall M, Damas B, Jewell SD, Mayer RJ, Goldberg RM, Saltz LB, Warren RS, Redston M. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J Clin Oncol. 2009;27 (11:1814–1821. - PMC - PubMed

Publication types