Climate-induced variations in global wildfire danger from 1979 to 2013
- PMID: 26172867
- PMCID: PMC4803474
- DOI: 10.1038/ncomms8537
Climate-induced variations in global wildfire danger from 1979 to 2013
Abstract
Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km(2) (25.3%) of the Earth's vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by long fire weather seasons (>1.0 σ above the historical mean) and an increased global frequency of long fire weather seasons across 62.4 million km(2) (53.4%) during the second half of the study period. If these fire weather changes are coupled with ignition sources and available fuel, they could markedly impact global ecosystems, societies, economies and climate.
Figures




Similar articles
-
Spatio-temporal trends in fire weather in the French Alps.Sci Total Environ. 2017 Oct 1;595:801-817. doi: 10.1016/j.scitotenv.2017.04.027. Epub 2017 Apr 12. Sci Total Environ. 2017. PMID: 28411563
-
A 1980-2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices.Sci Data. 2019 Feb 26;6:190032. doi: 10.1038/sdata.2019.32. Sci Data. 2019. PMID: 30806639 Free PMC article.
-
Global increase in wildfire risk due to climate-driven declines in fuel moisture.Glob Chang Biol. 2022 Feb;28(4):1544-1559. doi: 10.1111/gcb.16006. Epub 2021 Dec 2. Glob Chang Biol. 2022. PMID: 34800319
-
Landscape--wildfire interactions in southern Europe: implications for landscape management.J Environ Manage. 2011 Oct;92(10):2389-402. doi: 10.1016/j.jenvman.2011.06.028. Epub 2011 Jul 8. J Environ Manage. 2011. PMID: 21741757 Review.
-
Health Effects of Climate Change-induced Wildfires and Heatwaves.Cureus. 2019 May 28;11(5):e4771. doi: 10.7759/cureus.4771. Cureus. 2019. PMID: 31363452 Free PMC article. Review.
Cited by
-
Potential of Karrikins as Novel Plant Growth Regulators in Agriculture.Plants (Basel). 2019 Dec 26;9(1):43. doi: 10.3390/plants9010043. Plants (Basel). 2019. PMID: 31888087 Free PMC article. Review.
-
The burning island: Spatiotemporal patterns of fire occurrence in Madagascar.PLoS One. 2022 Mar 31;17(3):e0263313. doi: 10.1371/journal.pone.0263313. eCollection 2022. PLoS One. 2022. PMID: 35358197 Free PMC article.
-
Forest microbiome and global change.Nat Rev Microbiol. 2023 Aug;21(8):487-501. doi: 10.1038/s41579-023-00876-4. Epub 2023 Mar 20. Nat Rev Microbiol. 2023. PMID: 36941408 Review.
-
Mapping global research on climate and health using machine learning (a systematic evidence map).Wellcome Open Res. 2021 Jan 20;6:7. doi: 10.12688/wellcomeopenres.16415.1. eCollection 2021. Wellcome Open Res. 2021. PMID: 35252587 Free PMC article.
-
A wildfire vulnerability index for buildings.Sci Rep. 2022 Apr 16;12(1):6378. doi: 10.1038/s41598-022-10479-3. Sci Rep. 2022. PMID: 35430626 Free PMC article.
References
-
- Bowman D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009). - PubMed
-
- Giglio L., Randerson J. T. & van der Werf G. R. Analysis of daily, monthly, and annual burned area using the fourth generation global fire emissions database (GFED4). J. Geophys. Res. 118, 317–328 (2013).
-
- Andreae M. O. & Merlet P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 15, 955–966 (2001).
-
- Intergovernmental Panel on Climate Change (IPCC). Climate change 2007: The Physical Science Basis. Cambridge Univ. Press (2007).
-
- van der Werf G. R. et al. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6, 3423–3441 (2006).
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources