Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May;72(5):997-1003.
doi: 10.1002/ps.4080. Epub 2015 Aug 11.

Photochemical degradation of bismerthiazol: structural characterisation of the photoproducts and their inhibitory activities against Xanthomonas oryzae pv. oryzae

Affiliations

Photochemical degradation of bismerthiazol: structural characterisation of the photoproducts and their inhibitory activities against Xanthomonas oryzae pv. oryzae

Xiaoyu Liang et al. Pest Manag Sci. 2016 May.

Abstract

Background: Bismerthiazol is a commonly used bactericide against rice bacterial leaf blight in China. Although previous research determined that bismerthiazol is susceptible to photolytic degradation, the photodegradation pathway and degradation products, except for 2-amino-5-mercapto-1,3,4-thiadiazole, have remained unknown.

Results: The photodegradation of bismerthiazol was investigated after 4 and 8 h of irradiation in a solar simulator. Inhibition of Xanthomonas oryzae pv. oryzae (Xoo) was greater with a photolysed solution than with a non-photolysed solution of bismerthiazol. Six photoproducts of bismerthiazol were characterised by liquid chromatography coupled with mass spectrometry, and, based on these products, a photodegradation pathway was inferred. Inhibition of Xoo was significantly greater with bismerthiazol and 2-amino-5-mercapto-1,3,4-thiadiazole than with 5-amino-1,3,4-thiadiazole. In addition, Xoo strain 2-1-1 was bismerthiazol- and 2-amino-5-mercapto-1,3,4-thiadiazole resistant in vivo.

Conclusion: Photodegradation increased the inhibitory activity of bismerthiazol against Xoo. The photodegradation pathway was inferred on the basis of the photoproducts of bismerthiazol. In vitro assays indicated that the sulfhydryl group was crucial for the inhibition of Xoo by bismerthiazol and its photoproducts. Bismerthiazol and 2-amino-5-mercapto-1,3,4-thiadiazole might have a similar mode action in vivo and in vitro.

Keywords: Xanthomonas oryzae pv. oryzae; bismerthiazol; inhibitory activity; photodegradation; photoproducts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources