Modelling the experimental electron density: only the synergy of various approaches can tackle the new challenges
- PMID: 26175903
- PMCID: PMC4491316
- DOI: 10.1107/S2052252515007538
Modelling the experimental electron density: only the synergy of various approaches can tackle the new challenges
Abstract
Electron density is a fundamental quantity that enables understanding of the chemical bonding in a molecule or in a solid and the chemical/physical property of a material. Because electrons have a charge and a spin, two kinds of electron densities are available. Moreover, because electron distribution can be described in momentum or in position space, charge and spin density have two definitions and they can be observed through Bragg (for the position space) or Compton (for the momentum space) diffraction experiments, using X-rays (charge density) or polarized neutrons (spin density). In recent years, we have witnessed many advances in this field, stimulated by the increased power of experimental techniques. However, an accurate modelling is still necessary to determine the desired functions from the acquired data. The improved accuracy of measurements and the possibility to combine information from different experimental techniques require even more flexibility of the models. In this short review, we analyse some of the most important topics that have emerged in the recent literature, especially the most thought-provoking at the recent IUCr general meeting in Montreal.
Keywords: charge density; momentum density; spin density.
Similar articles
-
First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments.IUCrJ. 2014 Apr 14;1(Pt 3):194-9. doi: 10.1107/S2052252514007283. eCollection 2014 May 1. IUCrJ. 2014. PMID: 25075338 Free PMC article.
-
Exploring charge density analysis in crystals at high pressure: data collection, data analysis and advanced modelling.Acta Crystallogr B Struct Sci Cryst Eng Mater. 2017 Aug 1;73(Pt 4):584-597. doi: 10.1107/S2052520617008356. Epub 2017 Jul 26. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2017. PMID: 28762969
-
Muonium as a model for interstitial hydrogen in the semiconducting and semimetallic elements.Rep Prog Phys. 2009 Oct 15;72(11). doi: 10.1088/0034-4885/72/11/116501. Rep Prog Phys. 2009. PMID: 35172524 Review.
-
Temperature dependent spin momentum densities in Ni-Mn-In alloys.J Phys Condens Matter. 2010 Nov 10;22(44):446001. doi: 10.1088/0953-8984/22/44/446001. Epub 2010 Oct 22. J Phys Condens Matter. 2010. PMID: 21403357
-
The Relevance of Experimental Charge Density Analysis in Unraveling Noncovalent Interactions in Molecular Crystals.Molecules. 2022 Jun 8;27(12):3690. doi: 10.3390/molecules27123690. Molecules. 2022. PMID: 35744821 Free PMC article. Review.
Cited by
-
Charge densities in actinide compounds: strategies for data reduction and model building.IUCrJ. 2019 Aug 7;6(Pt 5):895-908. doi: 10.1107/S2052252519010248. eCollection 2019 Sep 1. IUCrJ. 2019. PMID: 31576222 Free PMC article.
-
Charge density studies of multicentre two-electron bonding of an anion radical at non-ambient temperature and pressure.IUCrJ. 2021 Jun 12;8(Pt 4):644-654. doi: 10.1107/S2052252521005273. eCollection 2021 Jul 1. IUCrJ. 2021. PMID: 34258012 Free PMC article.
-
Challenges in the structural science of materials.IUCrJ. 2016 Jun 27;3(Pt 4):226-7. doi: 10.1107/S2052252516010022. eCollection 2016 Jul 1. IUCrJ. 2016. PMID: 27437107 Free PMC article.
-
Quantum crystallography.Chem Sci. 2017 Jun 1;8(6):4159-4176. doi: 10.1039/c6sc05504d. Epub 2017 Mar 27. Chem Sci. 2017. PMID: 28878872 Free PMC article. Review.
References
-
- Abramov, Yu. A. (1997). Acta Cryst. A53, 264–272.
-
- Arfken, G. (1985). Mathematical Methods for Physicists. Orlando, USA: Academic Press.
-
- Aronica, C., Jeanneau, E., El Moll, H., Luneau, D., Gillon, B., Goujon, A., Cousson, A., Carvajal, M. A. & Robert, V. (2007). Chem. Eur. J. 13, 3666–3674. - PubMed
-
- Ayers, P. W., Boyd, R. J., Bultinck, P., Caffarel, M., Carbó-Dorca, R., Causá, M., Cioslowski, J., Contreras-Garcia, J., Cooper, D. L., Coppens, P., Gatti, C., Grabowsky, S., Lazzeretti, P., Macchi, P., Martín Pendás, A., Popelier, P. L. A., Ruedenberg, K., Rzepa, H., Savin, A., Sax, A., Schwarz, W. H. E., Shahbazian, S., Silvi, B., Solà, M. & Tsirelson, V. (2015). Comput. Theor. Chem. 1053, 2–16.
-
- Bader, R. F. W. (1990). Atoms in Molecules: A Quantum Theory. Oxford: Clarendon Press.
Publication types
LinkOut - more resources
Full Text Sources