Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions
- PMID: 26177726
- DOI: 10.1002/anie.201504001
Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions
Abstract
The utilization of compounds from natural sources to prepare functional materials is of great importance. Herein, we describe for the first time the preparation of organic-inorganic hybrid catalysts by using natural phytic acid as building block. Zirconium phosphonate (Zr-PhyA) was synthesized by reaction of phytic acid and ZrCl4 and was obtained as a mesoporous material with pore sizes centered around 8.5 nm. Zr-PhyA was used to catalyze the mild and selective Meerwein-Ponndorf-Verley (MPV) reduction of various carbonyl compounds, e.g., of levulinic acid and its esters into γ-valerolactone. Further studies indicated that both Zr and phosphate groups contribute significantly to the excellent performance of Zr-PhyA.
Keywords: Meerwein-Ponndorf-Verley reduction; natural resources; phytic acid; porous materials; zirconium phosphonate.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Amberlyst-15 supported zirconium sulfonate as an efficient catalyst for Meerwein-Ponndorf-Verley reductions.Chem Commun (Camb). 2022 Mar 24;58(25):4067-4070. doi: 10.1039/d2cc00157h. Chem Commun (Camb). 2022. PMID: 35262544
-
Highly Efficient Transfer Hydrogenation of Biomass-Derived Furfural to Furfuryl Alcohol over Mesoporous Zr-Containing Hybrids with 5-Sulfosalicylic Acid as a Ligand.Int J Environ Res Public Health. 2022 Jul 28;19(15):9221. doi: 10.3390/ijerph19159221. Int J Environ Res Public Health. 2022. PMID: 35954579 Free PMC article.
-
Zr-TUD-1: a Lewis acidic, three-dimensional, mesoporous, zirconium-containing catalyst.Chemistry. 2008;14(3):961-72. doi: 10.1002/chem.200700725. Chemistry. 2008. PMID: 17992668
-
Recyclable Zr/Hf-Containing Acid-Base Bifunctional Catalysts for Hydrogen Transfer Upgrading of Biofuranics: A Review.Front Chem. 2021 Dec 21;9:812331. doi: 10.3389/fchem.2021.812331. eCollection 2021. Front Chem. 2021. PMID: 34993179 Free PMC article. Review.
-
Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications.ChemSusChem. 2011 Oct 17;4(10):1407-19. doi: 10.1002/cssc.201100050. Epub 2011 May 20. ChemSusChem. 2011. PMID: 21598407 Review.
Cited by
-
Surface engineering in PbS via partial oxidation: towards an advanced electrocatalyst for reduction of levulinic acid to γ-valerolactone.Chem Sci. 2018 Dec 3;10(6):1754-1759. doi: 10.1039/c8sc03161d. eCollection 2019 Feb 14. Chem Sci. 2018. PMID: 30842841 Free PMC article.
-
t-BuOK-catalysed alkylation of fluorene with alcohols: a highly green route to 9-monoalkylfluorene derivatives.RSC Adv. 2019 Nov 4;9(61):35913-35916. doi: 10.1039/c9ra07557g. eCollection 2019 Oct 31. RSC Adv. 2019. PMID: 35528057 Free PMC article.
-
Porous Ti/Zr Microspheres for Efficient Transfer Hydrogenation of Biobased Ethyl Levulinate to γ-Valerolactone.ACS Omega. 2017 Mar 21;2(3):1047-1054. doi: 10.1021/acsomega.6b00469. eCollection 2017 Mar 31. ACS Omega. 2017. PMID: 31457487 Free PMC article.
-
Catalytic valorisation of biomass levulinic acid into gamma valerolactone using formic acid as a H2 donor: a critical review.RSC Adv. 2022 May 6;12(22):13673-13694. doi: 10.1039/d2ra01379g. eCollection 2022 May 5. RSC Adv. 2022. PMID: 35530384 Free PMC article. Review.
-
Deep eutectic solvent-assisted fabrication of zirconium phytate thin nanosheets for important biomass transformations.iScience. 2022 Aug 30;25(10):105039. doi: 10.1016/j.isci.2022.105039. eCollection 2022 Oct 21. iScience. 2022. PMID: 36147961 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources