Quantum-dot-in-perovskite solids
- PMID: 26178963
- DOI: 10.1038/nature14563
Quantum-dot-in-perovskite solids
Abstract
Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.
Comment in
-
Perovskite decomposition and missing crystal planes in HRTEM.Nature. 2021 Jun;594(7862):E6-E7. doi: 10.1038/s41586-021-03423-4. Epub 2021 Jun 9. Nature. 2021. PMID: 34108689 No abstract available.
Similar articles
-
Efficient Luminescence from Perovskite Quantum Dot Solids.ACS Appl Mater Interfaces. 2015 Nov 18;7(45):25007-13. doi: 10.1021/acsami.5b09084. Epub 2015 Nov 5. ACS Appl Mater Interfaces. 2015. PMID: 26529572
-
Enhanced performance of solution-processed broadband photodiodes by epitaxially blending MAPbBr3 quantum dots and ternary PbSxSe1-x quantum dots as the active layer.Nanotechnology. 2017 Dec 15;28(50):505501. doi: 10.1088/1361-6528/aa97b9. Nanotechnology. 2017. PMID: 29095147
-
Field-emission from quantum-dot-in-perovskite solids.Nat Commun. 2017 Mar 24;8:14757. doi: 10.1038/ncomms14757. Nat Commun. 2017. PMID: 28337981 Free PMC article.
-
Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices.Adv Mater. 2019 Nov;31(47):e1803515. doi: 10.1002/adma.201803515. Epub 2019 Feb 14. Adv Mater. 2019. PMID: 30761623 Review.
-
Nanostructured Perovskite Solar Cells.Nanomaterials (Basel). 2019 Oct 18;9(10):1481. doi: 10.3390/nano9101481. Nanomaterials (Basel). 2019. PMID: 31635204 Free PMC article. Review.
Cited by
-
State of the Art and Prospects for Halide Perovskite Nanocrystals.ACS Nano. 2021 Jul 27;15(7):10775-10981. doi: 10.1021/acsnano.0c08903. Epub 2021 Jun 17. ACS Nano. 2021. PMID: 34137264 Free PMC article.
-
All-Inorganic Perovskite Quantum Dot-Monolayer MoS2 Mixed-Dimensional van der Waals Heterostructure for Ultrasensitive Photodetector.Adv Sci (Weinh). 2018 Sep 21;5(12):1801219. doi: 10.1002/advs.201801219. eCollection 2018 Dec. Adv Sci (Weinh). 2018. PMID: 30581713 Free PMC article.
-
Facile synthesis of 1D organic-inorganic perovskite micro-belts with high water stability for sensing and photonic applications.Chem Sci. 2019 Mar 8;10(17):4567-4572. doi: 10.1039/c9sc00162j. eCollection 2019 May 7. Chem Sci. 2019. PMID: 31123566 Free PMC article.
-
Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters.Nat Commun. 2017 Aug 1;8(1):170. doi: 10.1038/s41467-017-00261-9. Nat Commun. 2017. PMID: 28761100 Free PMC article.
-
Overcoming lattice mismatch for core-shell NaGdF4@CsPbBr3 heterostructures.Nat Commun. 2025 Apr 24;16(1):3891. doi: 10.1038/s41467-025-59315-y. Nat Commun. 2025. PMID: 40274820 Free PMC article.
References
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources