Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Dec;55(12):3221-5.
doi: 10.1128/aem.55.12.3221-3225.1989.

Substrate interactions during aerobic biodegradation of benzene

Affiliations

Substrate interactions during aerobic biodegradation of benzene

E Arvin et al. Appl Environ Microbiol. 1989 Dec.

Abstract

This study dealt with the interactions with benzene degradation of the following aromatic compounds in a mixed substrate: toluene, o-xylene, naphthalene, 1,4-dimethylnaphthalene, phenanthrene, and pyrrole. The experiment was performed as a factorial experiment with simple batch cultures. The effect of two different types of inocula was tested. One type of inoculum was grown on a mixture of aromatic hydrocarbons; the other was grown on a mixture of aromatic hydrocarbons and nitrogen-, sulfur-, and oxygen-containing aromatic compounds (NSO compounds), similar to some of the compounds identified in creosote waste. The culture grown on the aromatic hydrocarbons and NSO compounds was much less efficient in degrading benzene than the culture grown on only aromatic hydrocarbons. The experiments indicated that toluene- and o-xylene-degrading bacteria are also able to degrade benzene, whereas naphthalene-, 1,,4-dimethylnaphthalene-, and phenanthrene-degrading bacteria have no or very little benzene-degrading ability. Surprisingly, the stimulating effect of toluene and o-xylene was true only if the two compounds were present alone. In combination an antagonistic effect was observed, i.e., the combined effect was smaller than the sum from each of the compounds. The reason for this behavior has not been identified. Pyrrole strongly inhibited benzene degradation even at concentrations of about 100 to 200 micrograms/liter. Future studies will investigate the generality of these findings.

PubMed Disclaimer

References

    1. Appl Environ Microbiol. 1988 Jul;54(7):1649-55 - PubMed
    1. Appl Environ Microbiol. 1985 Feb;49(2):394-401 - PubMed

Publication types

MeSH terms

LinkOut - more resources