Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jun;30(2):167-74.
doi: 10.3803/EnM.2015.30.2.167.

Clinical Implications of Glucose Variability: Chronic Complications of Diabetes

Affiliations
Review

Clinical Implications of Glucose Variability: Chronic Complications of Diabetes

Hye Seung Jung. Endocrinol Metab (Seoul). 2015 Jun.

Abstract

Glucose variability has been identified as a potential risk factor for diabetic complications; oxidative stress is widely regarded as the mechanism by which glycemic variability induces diabetic complications. However, there remains no generally accepted gold standard for assessing glucose variability. Representative indices for measuring intraday variability include calculation of the standard deviation along with the mean amplitude of glycemic excursions (MAGE). MAGE is used to measure major intraday excursions and is easily measured using continuous glucose monitoring systems. Despite a lack of randomized controlled trials, recent clinical data suggest that long-term glycemic variability, as determined by variability in hemoglobin A1c, may contribute to the development of microvascular complications. Intraday glycemic variability is also suggested to accelerate coronary artery disease in high-risk patients.

Keywords: Glucose variability; Macrovascular complications; Microvascular complications.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST: No potential conflict of interest relevant to this article was reported.

Figures

Fig. 1
Fig. 1. Twenty-four-hour glycemic curves of two patients with diabetes (red and blue lines). The two patients exhibit different patterns of glycemic variation; however, standard deviations calculated across all four points, before each meal and at bedtime (arrows), do not reflect this because the glucose measures are similar between the two patients at those points.
Fig. 2
Fig. 2. Continuous glucose monitoring in a patient with type 1 diabetes mellitus. Qualifying excursions are shown as blue arrows (only the inflection components in this case). Each inflection incorporates several excursions smaller than 1 standard deviation (SD) within a given day (44 mg/dL for day 1 and 65 mg/dL for day 2). The averaged excursion (that is, mean amplitude of glycemic excursion [MAGE]) is (A) 85.0 mg/dL for day 1 and (B) 156.5 mg/dL for day 2. MAGE calculated from the entire 48-hour time course (SD, 56.5 mg/dL) was 131.5 mg/dL; this level was similar across each day of the study period (120.7 mg/dL). Similar MAGE values could also be calculated from the descending limbs.
Fig. 3
Fig. 3. Glycemic measures in a randomized controlled trial comparing prandial and basal insulin in patients with cardiovascular disease (HEART2D study). Seven-point mean self-monitoring of blood glucose profiles at baseline (dotted line) and throughout the study (solid line) are indicative of the treatment strategy. Only the change in the mean absolute glucose level, an alleged measure of glucose variability, was significantly different between treatments, with no observable differences in standard deviation or mean amplitude of glycemic excursion. Therefore, accurate interpretation of the relationship between glycemic variability and the endpoint of combined cardiovascular events in this trial is prudent. Adapted from Raz et al. [47], with permission from American Diabetes Association. aP<0.05 between treatment.

References

    1. Service FJ. Glucose variability. Diabetes. 2013;62:1398–1404. - PMC - PubMed
    1. Facchinetti A, Sparacino G, Cobelli C. Modeling the error of continuous glucose monitoring sensor data: critical aspects discussed through simulation studies. J Diabetes Sci Technol. 2010;4:4–14. - PMC - PubMed
    1. Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36:3008–3013. - PubMed
    1. Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006;105:244–252. - PubMed
    1. Siegelaar SE, Holleman F, Hoekstra JB, DeVries JH. Glucose variability; does it matter? Endocr Rev. 2010;31:171–182. - PubMed

LinkOut - more resources