Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Aug;38(8):669-76.
doi: 10.14348/molcells.2015.0175. Epub 2015 Jul 21.

Exploiting the Fanconi Anemia Pathway for Targeted Anti-Cancer Therapy

Affiliations
Review

Exploiting the Fanconi Anemia Pathway for Targeted Anti-Cancer Therapy

Ukhyun Jo et al. Mol Cells. 2015 Aug.

Abstract

Genome instability, primarily caused by faulty DNA repair mechanisms, drives tumorigenesis. Therapeutic interventions that exploit deregulated DNA repair in cancer have made considerable progress by targeting tumor-specific alterations of DNA repair factors, which either induces synthetic lethality or augments the efficacy of conventional chemotherapy and radiotherapy. The study of Fanconi anemia (FA), a rare inherited blood disorder and cancer predisposition syndrome, has been instrumental in understanding the extent to which DNA repair defects contribute to tumorigenesis. The FA pathway functions to resolve blocked replication forks in response to DNA interstrand cross-links (ICLs), and accumulating knowledge of its activation by the ubiquitin-mediated signaling pathway has provided promising therapeutic opportunities for cancer treatment. Here, we discuss recent advances in our understanding of FA pathway regulation and its potential application for designing tailored therapeutics that take advantage of deregulated DNA ICL repair in cancer.

Keywords: DNA interstrand cross-link; DNA repair; Fanconi anemia; cancer therapeutics; ubiquitin signaling.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.
Overview of the FA pathway. (A) A stalled replication fork at a DNA ICL activates the FA core complex to monoubiquitinate the FANCD2-FANCI heterodimer. (B) Ubiquitinated FANCD2 recruits a nuclease complex to initiate nucleolytic incisions flanking the ICL. (C) The unhooked lesion is processed and bypassed by TLS polymerases to restore a nascent leading strand. (D) Downstream FA proteins promote HR to repair double-stranded breaks, and the unhooked ICL is removed by NER. The USP1-UAF1 complex removes ubiquitin from FANCD2 to complete the repair.
Fig. 2.
Fig. 2.
Posttranslational modifications involved in the activation of FANCD2. (A) The FA core complex consists of three modules plus a lesion recognition unit, FANCM. Recognition of a DNA ICL by the FANCM-FAAP24-MHF complex activates ATR checkpoint signaling. (B) ATR and its effector CHK1 phosphorylate components of the FA core complex and the FANCD2-FANCI complex to control their activities. (C) The FANCB-FANCL-FAAP100 module constitutes a minimal catalytic core to monoubiquitinate FANCD2. FANCI phosphorylation potentiates FANCD2 activation. (D) ‘SUMO spray’ of FANC proteins may ensure balanced protein dosage required for the functional integrity of the FA pathway during DNA repair. For instance, FANCA and FANCD2 undergo controlled degradation by the integrated SUMO-ubiquitin signaling.
Fig. 3.
Fig. 3.
Strategies to exploit deregulated DNA repair for anticancer therapy. Deregulation of DNA repair leads to hyperdependency on a compensatory repair pathway or acquired platinum resistance due to an enhanced DNA repair capacity of cancer cells, which can be exploited by synthetic lethal interactions or resensitization to cross-linking agents.

References

    1. Bartkova J., Rezaei N., Liontos M., Karakaidos P., Kletsas D., Issaeva N., Vassiliou L.V., Kolettas E., Niforou K., Zoumpourlis V.C., et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–637. - PubMed
    1. Blackford A.N., Schwab R.A., Nieminuszczy J., Deans A.J., West S.C., Niedzwiedz W. The DNA translocase activity of FANCM protects stalled replication forks. Human molecular genetics. 2012;21:2005–2016. - PubMed
    1. Bogliolo M., Schuster B., Stoepker C., Derkunt B., Su Y., Raams A., Trujillo J.P., Minguillon J., Ramirez M.J., Pujol R., et al. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. American journal of human genetics. 2013;92:800–806. - PMC - PubMed
    1. Bryant H.E., Schultz N., Thomas H.D., Parker K.M., Flower D., Lopez E., Kyle S., Meuth M., Curtin N.J., Helleday T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–917. - PubMed
    1. Budzowska M., Graham T.G., Sobeck A., Waga S., Walter J.C. Regulation of the Rev1-pol zeta complex during bypass of a DNA interstrand cross-link. EMBO J. 2015;pii:e201490878. [Epub ahead of print] - PMC - PubMed

Publication types

Substances