Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 30;6(18):16517-26.
doi: 10.18632/oncotarget.4140.

Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies

Affiliations

Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies

Timo Gemoll et al. Oncotarget. .

Abstract

Cancer proteomics provide a powerful approach to identify biomarkers for personalized medicine. Particularly, biomarkers for early detection, prognosis and therapeutic intervention of bone cancers, especially osteosarcomas, are missing. Initially, we compared two-dimensional gel electrophoresis (2-DE)-based protein expression pattern between cell lines of fetal osteoblasts, osteosarcoma and pulmonary metastasis derived from osteosarcoma. Two independent statistical analyses by means of PDQuest® and SameSpot® software revealed a common set of 34 differentially expressed protein spots (p < 0.05). 17 Proteins were identified by mass spectrometry and subjected to Ingenuity Pathway Analysis resulting in one high-ranked network associated with Gene Expression, Cell Death and Cell-To-Cell Signaling and Interaction. Ran/TC4-binding protein (RANBP1) and Cathepsin D (CTSD) were further validated by Western Blot in cell lines while the latter one showed higher expression differences also in cytospins and in clinical samples using tissue microarrays comprising osteosarcomas, metastases, other bone malignancies, and control tissues. The results show that protein expression patterns distinguish fetal osteoblasts from osteosarcomas, pulmonary metastases, and other bone diseases with relevant sensitivities between 55.56% and 100% at ≥87.50% specificity. Particularly, CTSD was validated in clinical material and could thus serve as a new biomarker for bone malignancies and potentially guide individualized treatment regimes.

Keywords: CTSD; bone malignancies; mass spectrometry; osteosarcoma; two-dimensional gel electrophoresis.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTERESTS

All authors have no conflict of interest.

Figures

Figure 1
Figure 1. Workflow of the study design
* target reached significance in individual validation steps.
Figure 2
Figure 2. PCA map of the protein expression data
Included are 34 significant (a) and 17 identified (b) proteins that were able to group fetal osteoblasts (black), osteosarcomas (red) and pulmonary metastases (green). X and y-axis show first and second principal components. Cell lines were run in triplicates A., B., C.
Figure 3
Figure 3. Representative images and data of the CTSD validation on cytospins of all cell lines (A) and tissue microarray validations (B)
CTSD showed an increased staining from fetal osteoblasts, osteosarcomas to pulmonary metastasis (A, left) that reached significance between three groups (A, right). Customized (B, left) and commercially (B, right) tissue microarray-based evaluation of CTSD showed a strong overexpression in osteosarcomas, pulmonary metastasis and distinct bone diseases (except Ewing's sarcoma) compared to normal bone tissue. Based on the lack of representative fetal osteoblasts in the normal bone tissue, we chose isolated osteocytes – known to be descended from matured osteoblasts – as reference control (***: 0.0001 < p < 0.001; **: 0.001 < p < 0.01; * 0.01 < p < 0.05).

References

    1. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115:1531–1543. - PMC - PubMed
    1. Murphey MD, Robbin MR, McRae GA, Flemming DJ, Temple HT, Kransdorf MJ. The many faces of osteosarcoma. Radiographics. 1997;17:1205–1231. - PubMed
    1. Folio C, Zalacain M, Zandueta C, Ormazabal C, Sierrasesumaga L, Julian MS, de Las Rivas J, Toledo G, Lecanda F, Patino-Garcia A. Cortactin (CTTN) overexpression in osteosarcoma correlates with advanced stage and reduced survival. Cancer Biomark. 2011;10:35–41. - PubMed
    1. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, Kotz R, Salzer-Kuntschik M, Werner M, Winkelmann W, Zoubek A, Jurgens H, Winkler K. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20:776–790. - PubMed
    1. Stiller CA, Craft AW, Corazziari I, Group EW. Survival of children with bone sarcoma in Europe since 1978: results from the EUROCARE study. European journal of cancer. 2001;37:760–766. - PubMed

Publication types

MeSH terms