Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug 20;119(33):10784-97.
doi: 10.1021/acs.jpcb.5b05625. Epub 2015 Aug 6.

Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study

Affiliations

Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study

Alexander G Shard et al. J Phys Chem B. .

Erratum in

  • Correction to Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study.
    Shard AG, Havelund R, Spencer SJ, Gilmore IS, Alexander MR, Angerer TB, Aoyagi S, Barnes JP, Benayad A, Bernasik A, Ceccone G, Counsell JD, Deeks C, Fletcher JS, Graham DJ, Heuser C, Lee TG, Marie C, Marzec MM, Mishra G, Rading D, Renault O, Scurr DJ, Shon HK, Spampinato V, Tian H, Wang F, Winograd N, Wu K, Wucher A, Zhou Y, Zhu Z, Cristaudo V, Poleunis C. Shard AG, et al. J Phys Chem B. 2015 Nov 5;119(44):14337. doi: 10.1021/acs.jpcb.5b09767. Epub 2015 Oct 15. J Phys Chem B. 2015. PMID: 26469795 No abstract available.

Abstract

We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources