Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan:100:17-26.
doi: 10.1016/j.neuropharm.2015.07.028. Epub 2015 Jul 26.

Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition

Affiliations
Review

Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition

Oliver H Miller et al. Neuropharmacology. 2016 Jan.

Abstract

A single, low dose of ketamine evokes antidepressant actions in depressed patients and in patients with treatment-resistant depression (TRD). Unlike classic antidepressants, which regulate monoamine neurotransmitter systems, ketamine is an antagonist of the N-methyl-D-aspartate (NMDA) family of glutamate receptors. The effectiveness of NMDAR antagonists in TRD unveils a new set of targets for therapeutic intervention in major depressive disorder (MDD) and TRD. However, a better understanding of the cellular mechanisms underlying these effects is required for guiding future therapeutic strategies, in order to minimize side effects and prolong duration of efficacy. Here we review the evidence for and against two hypotheses that have been proposed to explain how NMDAR antagonism initiates protein synthesis and increases excitatory synaptic drive in corticolimbic brain regions, either through selective antagonism of inhibitory interneurons and cortical disinhibition, or by direct inhibition of cortical pyramidal neurons. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.

Keywords: AMPA receptor; AMPAR; Ambient glutamate; Cortex; Depression; Disinhibition; Folimycin (PubChem CID: 6438151); GluN2B; Glutamate (PubChem CID: 33032); Homeostatic synaptic plasticity; Inhibition; Ketamine; Ketamine (PubChem CID: 3821); MK-801 (PubChem CID: 180081); Memantine (PubChem CID: 4054); NBQX (PubChem CID: 3272524); NMDA receptor; NMDAR; Picrotoxin (PubChem CID: 5360688); Protein synthesis; Rapamycin (PubChem CID: 5284616); Riluzole (PubChem CID: 5070); Ro 25-6981 (PubChem CID: 6604887).

PubMed Disclaimer

Publication types

MeSH terms