Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Aug;12(2):95-9.

The placenta releases branched-chain keto acids into the umbilical and uterine circulations in the pregnant sheep

Affiliations
  • PMID: 2621340

The placenta releases branched-chain keto acids into the umbilical and uterine circulations in the pregnant sheep

T C Smeaton et al. J Dev Physiol. 1989 Aug.

Erratum in

  • J Dev Physiol 1990 Mar;13(3):following 177

Abstract

There was net uptake of branched-chain keto acids by the fetus from the umbilical circulation. Mean fetal uptake of the 3 keto acids 2-keto isovalerate, 2-keto isocaproate and 2-keto methylvalerate was 1.8 mumol/min per kg of fetus. The concentrations in the umbilical vein for these keto acids were 10.9 +/- 3.8 microM (mean +/- SD: 2-keto isovalerate), 19.7 +/- 6.1 microM (2-keto isocaproate) and 14.8 +/- 5.3 microM (2-keto methylvalerate) respectively. The coefficients of extraction for the same keto acids were 17.2%, 16.8% and 11.9% respectively. Fetal uptakes (both mumol/min and mumol/min per kg fetus) were positively correlated with umbilical supply. There were concentration gradients across the placenta, with fetal concentration: maternal concentration ratios of 3.3 +/- 1.5 for 2-keto isovalerate, 2.1 +/- 0.8 for 2-keto isocaproate and 1.3 +/- 0.6 for 2-keto methylvalerate. The net release of 2-keto acids into the umbilical circulation may conserve the carbon skeleton of branched-chain amino acids for fetal metabolism and growth. In the uterine circulation there was not a consistent pattern of release from or uptake by the uteroplacental tissues. It is suggested that branched-chain keto acids may contribute to fetal growth or energy metabolism.

PubMed Disclaimer

Publication types