Pharmacology and physiology of gastrointestinal enteroendocrine cells
- PMID: 26213627
- PMCID: PMC4506687
- DOI: 10.1002/prp2.155
Pharmacology and physiology of gastrointestinal enteroendocrine cells
Abstract
Gastrointestinal (GI) polypeptides are secreted from enteroendocrine cells (EECs). Recent technical advances and the identification of endogenous and synthetic ligands have enabled exploration of the pharmacology and physiology of EECs. Enteroendocrine signaling pathways stimulating hormone secretion involve multiple nutrient transporters and G protein-coupled receptors (GPCRs), which are activated simultaneously under prevailing nutrient conditions in the intestine following a meal. The majority of studies investigate hormone secretion from EECs in response to single ligands and although the mechanisms behind how individual signaling pathways generate a hormonal output have been well characterized, our understanding of how these signaling pathways converge to generate a single hormone secretory response is still in its infancy. However, a picture is beginning to emerge of how nutrients and full, partial, or allosteric GPCR ligands differentially regulate the enteroendocrine system and its interaction with the enteric and central nervous system. So far, activation of multiple pathways underlies drug discovery efforts to harness the therapeutic potential of the enteroendocrine system to mimic the phenotypic changes observed in patients who have undergone Roux-en-Y gastric surgery. Typically obese patients exhibit ∼30% weight loss and greater than 80% of obese diabetics show remission of diabetes. Targeting combinations of enteroendocrine signaling pathways that work synergistically may manifest with significant, differentiated EEC secretory efficacy. Furthermore, allosteric modulators with their increased selectivity, self-limiting activity, and structural novelty may translate into more promising enteroendocrine drugs. Together with the potential to bias enteroendocrine GPCR signaling and/or to activate multiple divergent signaling pathways highlights the considerable range of therapeutic possibilities available. Here, we review the pharmacology and physiology of the EEC system.
Keywords: Chemosensing; GLP-1; GPCR; diabetes; enteroendocrine; intestine.
Figures



Similar articles
-
Luminal chemosensing in the gastroduodenal mucosa.Curr Opin Gastroenterol. 2017 Nov;33(6):439-445. doi: 10.1097/MOG.0000000000000396. Curr Opin Gastroenterol. 2017. PMID: 28806271 Free PMC article. Review.
-
Single-cell transcriptomic atlas of enteroendocrine cells along the murine gastrointestinal tract.PLoS One. 2024 Oct 8;19(10):e0308942. doi: 10.1371/journal.pone.0308942. eCollection 2024. PLoS One. 2024. PMID: 39378212 Free PMC article.
-
Enteroendocrine Regulation of Nutrient Absorption.J Nutr. 2020 Jan 1;150(1):10-21. doi: 10.1093/jn/nxz191. J Nutr. 2020. PMID: 31504661
-
Digestive physiology of the pig symposium: G protein-coupled receptors in nutrient chemosensation and gastrointestinal hormone secretion.J Anim Sci. 2013 May;91(5):1946-56. doi: 10.2527/jas.2012-5910. Epub 2012 Dec 10. J Anim Sci. 2013. PMID: 23230119 Review.
-
Molecular mechanisms of stimulus detection and secretion in enteroendocrine cells.Curr Opin Neurobiol. 2025 Jun;92:103045. doi: 10.1016/j.conb.2025.103045. Epub 2025 May 15. Curr Opin Neurobiol. 2025. PMID: 40378579 Review.
Cited by
-
The Emerging Role of Polyphenols in the Management of Type 2 Diabetes.Molecules. 2021 Jan 29;26(3):703. doi: 10.3390/molecules26030703. Molecules. 2021. PMID: 33572808 Free PMC article. Review.
-
Gastrointestinal Vagal Afferents and Food Intake: Relevance of Circadian Rhythms.Nutrients. 2021 Mar 5;13(3):844. doi: 10.3390/nu13030844. Nutrients. 2021. PMID: 33807524 Free PMC article. Review.
-
Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea.Genes (Basel). 2021 May 10;12(5):710. doi: 10.3390/genes12050710. Genes (Basel). 2021. PMID: 34068683 Free PMC article.
-
Regulation of Ion Transport in the Intestine by Free Fatty Acid Receptor 2 and 3: Possible Involvement of the Diffuse Chemosensory System.Int J Mol Sci. 2018 Mar 5;19(3):735. doi: 10.3390/ijms19030735. Int J Mol Sci. 2018. PMID: 29510573 Free PMC article. Review.
-
Homeostatic regulation of food intake.Clin Res Hepatol Gastroenterol. 2022 Feb;46(2):101794. doi: 10.1016/j.clinre.2021.101794. Epub 2021 Sep 1. Clin Res Hepatol Gastroenterol. 2022. PMID: 34481092 Free PMC article. Review.
References
-
- Adrian TE, Gariballa S, Parekh KA, Thomas SA, Saadi H, Al KJ. Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers. Diabetologia. 2012;55:2343–2347. , et al. ( - PubMed
-
- Akhtar M, Watson JL, Nazli A, McKay DM. Bacterial DNA evokes epithelial IL-8 production by a MAPK-dependent, NF-kappaB-independent pathway. FASEB J. 2003;17:1319–1321. - PubMed
-
- Amato A, Cinci L, Rotondo A, Serio R, Faussone-Pellegrini MS, Vannucchi MG. Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors. Neurogastroenterol Motil. 2010;22:664-e203. , et al. ( - PubMed
-
- Anini Y, Brubaker PL. Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells. Endocrinology. 2003;144:3244–3250. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials