Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Dec;30(12):1827-34.

Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity

Affiliations
  • PMID: 2621411
Free article

Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity

D W Morel et al. J Lipid Res. 1989 Dec.
Free article

Abstract

Increased lipid peroxidation products were detected in a lipoprotein fraction containing very low density lipoprotein (VLDL) and low density lipoprotein (LDL) obtained from rats made diabetic by streptozotocin injection. The enhanced oxidation in the diabetic VLDL plus LDL fraction correlated with the in vitro toxicity of this lipoprotein fraction to proliferating fibroblasts. In contrast, high density lipoprotein (HDL) was not cytotoxic. That the increased oxidation and development of cytotoxic activity in the diabetic VLDL + LDL was related to the diabetes was shown by the fact that insulin treatment of diabetic animals inhibited both oxidation and cytotoxicity of VLDL + LDL. In contrast, treatment of diabetic rats with the antioxidants vitamin E or probucol after diabetes was established also inhibited both the in vivo oxidation and in vitro cytotoxicity of diabetic VLDL + LDL, but without altering hyperglycemia. Vitamin E or probucol treatment thus allowed separation of the oxidation process from the hyperglycemia occurring in experimental diabetes. The mechanisms by which diabetes in humans or experimental animals leads to the various manifestations of tissue damage are unknown; however, these studies demonstrate for the first time that a relationship exists between the in vivo oxidation of lipoproteins in diabetes and the potential for tissue damage as monitored by in vitro cytotoxicity. Furthermore, these results suggest that the mechanism for certain aspects of tissue damage accompanying experimental diabetes may be mediated by lipid peroxidation products.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources