Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul 29:14:140.
doi: 10.1186/s12943-015-0418-x.

Bevacizumab promotes venous thromboembolism through the induction of PAI-1 in a mouse xenograft model of human lung carcinoma

Affiliations

Bevacizumab promotes venous thromboembolism through the induction of PAI-1 in a mouse xenograft model of human lung carcinoma

Ni Chen et al. Mol Cancer. .

Abstract

Background: An increased incidence of venous thromboembolism (VTE) is associated with anti-vascular endothelial growth factor (VEGF) treatment in cancer. However, the mechanism underlying this effect remains elusive. In this study, we examined the effect of bevacizumab, a humanized monoclonal antibody against VEGF-A, on VTE in a murine xenograft A549 cell tumor model.

Methods: Inferior vena cava stenosis model and FeCl3-induced saphenous vein thrombosis model were performed in a mouse xenograft models of human lung adenocarcinoma.

Results: We found that treatment with bevacizumab significantly increased the thrombotic response to inferior vena cava obstruction and femoral vein injury. Plasminogen activator inhibitor (PAI-1) expression in tumors, plasma, and thrombi was significantly increased by bevacizumab. However, bevacizumab did not enhance VTE in PAI-1-deficient mice, suggesting that PAI-1 is a major mediator of bevacizumab's prothrombotic effect. VEGF inhibited expression of PAI-1 by A549 cells, and this effect was neutralized by bevacizumab, suggesting that bevacizumab increases PAI-1 expression in vivo by blocking the inhibitory effect of VEGF on PAI-1 expression by tumor cells. Pharmacological inhibition of PAI-1 with PAI-039 blocked bevacizumab-induced venous thrombosis.

Conclusion: Collectively, these findings indicate that PAI-1 plays a role in VTE associated with antiangiogenic therapy and the inhibition of PAI-1 shows efficacy as a therapeutic strategy for the prevention of bevacizumab-associated VTE.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Bevacizumab promotes venous thrombosis. a. IVC stenosis was induced in tumor-bearing mice (n = 6/group). Three hours after ligation, mice were euthanized and the weight of the thrombus was determined. Representative whole thrombi and cross-sections of thrombi retrieved from mice treated with bevacizumab (Beva) or vehicle control are shown. *P < 0.05 vs. vehicle control. b. Saphenous vein thrombosis was induced using 10 % FeCl3 in control (n = 6) and A549 tumor-bearing mice (n = 6). Occlusion times were measured and are shown as the mean ± SEM. *P < 0.05 vs. the vehicle group. c. Tumors were excised and lysates were prepared and subjected to Western blotting to detect VEGF-A, PAI-1, and β-actin. Representative blots and densitometric analyses of 3 independent experiments are shown. *P < 0.05 vs. control. d. Plasma PAI-1 antigen was measured (n = 6/group); *P < 0.05 vs. the vehicle group. Beva: bevacizumab
Fig. 2
Fig. 2
Bevacizumab promotes venous thrombosis in a PAI-1-dependent manner. a. The intrathrombotic gene expression of PAI-1 in the bevacizumab and vehicle groups was determined via real-time RT-PCR. All values represent mean ± SEM (n = 6/group). *P < 0.01 vs. the vehicle group. b. IVC stenosis was induced in WT and Pai-1 −/− mice (n = 6/group). Ten days after ligation, all mice were euthanized, and the weight of the thrombus was determined. *P < 0.05 vs. the vehicle group in WT mice; **P < 0.05 vs. the vehicle group in WT mice; #P < 0.05 vs. the bevacizumab group in WT mice, and #P = 0.74 vs. the vehicle group in Pai-1 −/− mice (n = 6/group). c. Saphenous vein thrombosis was induced using 10 % FeCl3 in WT and Pai-1 −/− mice (n = 6/group). Occlusion times were measured and are shown as the mean ± SEM. *P < 0.05 vs. the vehicle group in WT mice; **P < 0.05 vs. the vehicle group in WT mice; #P < 0.05 vs. the bevacizumab group in WT mice. d. A549 cells were cultured for 24 hrs in the presence and absence of VEGF (50 ng/mL) and bevacizumab (250 μg/mL), as indicated. Cell lysates were prepared and subjected to Western blotting to detect PAI-1and β-actin. Representative blot and densitometric analyses of 3 independent experiments are shown. *P < 0.05 vs. control (i.e. no VEGF or Beva)
Fig. 3
Fig. 3
Pharmacological inhibition of PAI-1 blocks the prothrombotic effect of bevacizumab. a. IVC stenosis was induced in tumor-bearing mice. The mean weight of the thrombus was determined. *P < 0.05 vs. the vehicle group; **P < 0.05 vs. the beva group; #P > 0.05 vs. beva + PAI-039 group (n = 6/group). b. Mean occlusion times were measured in a saphenous vein thrombosis model and are shown as the mean ± SEM. *P < 0.01 vs. the vehicle group; **P < 0.05 vs. the beva group; #P > 0.05 vs. beva + PAI-039 group (n = 6/group). Beva: bevacizumab
Fig. 4
Fig. 4
Tumor growth inhibition by bevacizumab in orthotopic A549 xenografts. a. A549 tumor growth curves of nude mice receiving bevacizumab (Beva; 200 μg/mouse; once weekly), PAI-039 (2 mg/kg/day), both, or vehicle control (n = 6/group). Arrow denotes first bevacizumab injection. Tumor sizes of Beva and Beva + PAI-039 groups were significantly less than those of vehicle group (P < 0.05) at 24 days and all subsequent time points, whereas differences between PAI-039 and vehicle groups were not statistically significant at any time point. b. Representative images of tumors retrieved at completion of treatment protocol. c. Bioluminescent imaging of A549-luc tumors after completion of treatment protocol. Note smaller tumor sizes in bevacizumab-treated mice

Similar articles

Cited by

References

    1. Zangari M, Fink LM, Elice F, Zhan F, Adcock DM, Tricot GJ. Thrombotic events in patients with cancer receiving antiangiogenesis agents. J Clin Oncol. 2009;27:4865–4873. doi: 10.1200/JCO.2009.22.3875. - DOI - PubMed
    1. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358:1129–1136. doi: 10.1056/NEJMoa0707330. - DOI - PMC - PubMed
    1. Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomized phase 3 trial. Lancet. 2011;378:1931–1939. doi: 10.1016/S0140-6736(11)61613-9. - DOI - PubMed
    1. Evans CE, Grover SP, Humphries J, Saha P, Patel AP, Patel AS, et al. Antiangiogenic therapy inhibits venous thrombus resolution. Arterioscler Thromb Vasc Biol. 2014;34:565. doi: 10.1161/ATVBAHA.113.302998. - DOI - PubMed
    1. Nalluri SR, Chu D, Keresztes R, Zhu X, Wu S. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA. 2008;300:2277–2285. doi: 10.1001/jama.2008.656. - DOI - PubMed

Publication types

MeSH terms

Substances