Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep:82:168-80.
doi: 10.1016/j.fgb.2015.07.008. Epub 2015 Jul 26.

Functional analysis of the role of glutathione peroxidase (GPx) in the ROS signaling pathway, hyphal branching and the regulation of ganoderic acid biosynthesis in Ganoderma lucidum

Affiliations

Functional analysis of the role of glutathione peroxidase (GPx) in the ROS signaling pathway, hyphal branching and the regulation of ganoderic acid biosynthesis in Ganoderma lucidum

Chenyang Li et al. Fungal Genet Biol. 2015 Sep.

Abstract

Ganoderma lucidum, a hallmark of traditional Chinese medicine, has been widely used as a pharmacologically active compound. Although numerous research studies have focused on the pharmacological mechanism, fewer studies have explored the basic biological features of this species, restricting the further development and application of this important mushroom. Because of the ability of this mushroom to reduce and detoxify the compounds produced by various metabolic pathways, glutathione peroxidase (GPx) is one of the most important antioxidant enzymes with respect to ROS. Although studies in both animals and plants have suggested many important physiological functions of GPx, there are few systematic research studies concerning the role of this enzyme in fungi, particularly in large basidiomycetes. In the present study, we cloned the GPx gene and created GPx-silenced strains by the down-regulation of GPx gene expression using RNA interference. The results indicated an essential role for GPx in controlling the intracellular H2O2 content, hyphal branching, antioxidant stress tolerance, cytosolic Ca(2+) content and ganoderic acid biosynthesis. Further mechanistic investigation revealed that GPx is regulated by intracellular H2O2 levels and suggested that crosstalk occurs between GPx and intracellular H2O2. Moreover, evidence was obtained indicating that GPx regulation of hyphal branching via ROS might occur independently of the cytosolic Ca(2+) content. Further mechanistic investigation also revealed that the effects of GPx on ganoderic acid synthesis via ROS are regulated by the cytosolic Ca(2+) content. Taken together, these findings indicate that ROS have a complex influence on growth, development and secondary metabolism in fungi and that GPx serves an important function. The present study provides an excellent framework to identify GPx functions and highlights a role for this enzyme in ROS regulation.

Keywords: Development; Ganoderma lucidum; Glutathione peroxidase (GPx); Reactive oxygen species (ROS); Secondary metabolism.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources