Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec 4;80(23):11726-33.
doi: 10.1021/acs.joc.5b01348. Epub 2015 Aug 4.

5,20-Di(pyridin-2-yl)-[28]hexaphyrin(1.1.1.1.1.1): A Stable Hückel Antiaromatic Hexaphyrin Stabilized by Intramolecular Hydrogen Bonding and Protonation-Induced Conformational Twist To Gain Möbius Aromaticity

Affiliations

5,20-Di(pyridin-2-yl)-[28]hexaphyrin(1.1.1.1.1.1): A Stable Hückel Antiaromatic Hexaphyrin Stabilized by Intramolecular Hydrogen Bonding and Protonation-Induced Conformational Twist To Gain Möbius Aromaticity

Koji Naoda et al. J Org Chem. .

Abstract

5,20-Di(pyridin-2-yl)-[28]hexaphyrin(1.1.1.1.1.1) 7 was prepared and characterized as a stable Hückel antiaromatic molecule with a dumbbell-like structure stabilized by effective intramolecular hydrogen bonding interactions involving the 2-pyridyl nitrogen atoms. Pd(II) metalation of 7 afforded two bis-Pd(II) complexes, 9-syn and 9-anti, whose structures are rigidly held by Pd(II) coordination, rendering 9-syn to be nonaromatic because of its highly distorted structure and 9-anti to be Hückel antiaromatic because of its enforced planar dumbbell structure. In contrast, protonation of 7 with methanesulfonic acid (MSA) led to the formation of its triprotonated species 7H(3), which has been shown to take on twisted conformations with Möbius aromaticity in CH(2)Cl(2), while the structure was held to be a planar rectangular conformation in the crystal. Excited-state dynamics were measured for 7, 7H(3), 9-syn, and 9-anti, which indicated their electronic nature to be antiaromatic, aromatic, nonaromatic, and antiaromatic, respectively.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources