Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2016 Apr;124(4):413-9.
doi: 10.1289/ehp.1409164. Epub 2015 Jul 24.

Desert Dust Outbreaks in Southern Europe: Contribution to Daily PM₁₀ Concentrations and Short-Term Associations with Mortality and Hospital Admissions

Collaborators, Affiliations
Meta-Analysis

Desert Dust Outbreaks in Southern Europe: Contribution to Daily PM₁₀ Concentrations and Short-Term Associations with Mortality and Hospital Admissions

Massimo Stafoggia et al. Environ Health Perspect. 2016 Apr.

Abstract

Background: Evidence on the association between short-term exposure to desert dust and health outcomes is controversial.

Objectives: We aimed to estimate the short-term effects of particulate matter ≤ 10 μm (PM10) on mortality and hospital admissions in 13 Southern European cities, distinguishing between PM10 originating from the desert and from other sources.

Methods: We identified desert dust advection days in multiple Mediterranean areas for 2001-2010 by combining modeling tools, back-trajectories, and satellite data. For each advection day, we estimated PM10 concentrations originating from desert, and computed PM10 from other sources by difference. We fitted city-specific Poisson regression models to estimate the association between PM from different sources (desert and non-desert) and daily mortality and emergency hospitalizations. Finally, we pooled city-specific results in a random-effects meta-analysis.

Results: On average, 15% of days were affected by desert dust at ground level (desert PM10 > 0 μg/m3). Most episodes occurred in spring-summer, with increasing gradient of both frequency and intensity north-south and west-east of the Mediterranean basin. We found significant associations of both PM10 concentrations with mortality. Increases of 10 μg/m3 in non-desert and desert PM10 (lag 0-1 days) were associated with increases in natural mortality of 0.55% (95% CI: 0.24, 0.87%) and 0.65% (95% CI: 0.24, 1.06%), respectively. Similar associations were estimated for cardio-respiratory mortality and hospital admissions.

Conclusions: PM10 originating from the desert was positively associated with mortality and hospitalizations in Southern Europe. Policy measures should aim at reducing population exposure to anthropogenic airborne particles even in areas with large contribution from desert dust advections.

Citation: Stafoggia M, Zauli-Sajani S, Pey J, Samoli E, Alessandrini E, Basagaña X, Cernigliaro A, Chiusolo M, Demaria M, Díaz J, Faustini A, Katsouyanni K, Kelessis AG, Linares C, Marchesi S, Medina S, Pandolfi P, Pérez N, Querol X, Randi G, Ranzi A, Tobias A, Forastiere F, MED-PARTICLES Study Group. 2016. Desert dust outbreaks in Southern Europe: contribution to daily PM10 concentrations and short-term associations with mortality and hospital admissions. Environ Health Perspect 124:413-419; http://dx.doi.org/10.1289/ehp.1409164.

PubMed Disclaimer

Conflict of interest statement

The authors declare they have no actual or potential competing financial interests.

Figures

Figure 1
Figure 1
Forest plot with results on estimated percent increases (95% CI) in risk of natural mortality associated with 10-μg/m3 increase in total PM10 (A), non-desert PM10 (B), and desert PM10 (C).Points represent city-specific association estimates, with corresponding 95% CIs (bars). The shaded boxes represent the weights attributed to each estimate in the meta-analysis. Finally, the diamond in the bottom part represents the meta-analytical effect estimate. D-L, DerSimonian and Laird method.
Figure 2
Figure 2
Estimated percent increase (95% CI) in risk of mortality (A) and hospitalizations (B) associated with 10-μg/m3 increase in non-desert (white symbols) and desert (black symbols) PM10, by season.

References

    1. Alessandrini ER, Stafoggia M, Faustini A, Gobbi GP, Forastiere F. Saharan dust and the association between particulate matter and daily hospitalisations in Rome, Italy. Occup Environ Med. 2013;70:432–434. - PubMed
    1. Brunekreef B, Forsberg B. Epidemiological evidence of effects of coarse airborne particles on health. Eur Respir J. 2005;26:309–318. - PubMed
    1. Escudero M, Castillo S, Querol X, Avila A, Alarcón M, Viana MM, et al. 2005. Wet and dry African dust episodes over eastern Spain. J Geophys Res 110 D18S08; doi:10.1029/2004JD004731 - DOI
    1. Escudero M, Querol X, Pey J, Alastuey A, Pérez N, Ferreira F, et al. A methodology for the quantification of the net African dust load in air quality monitoring networks. Atmos Environ. 2007;41:5516–5524.
    1. Gkikas A, Hatzianastassiou N, Mihalopoulos N, Katsoulis V, Kazadzis S, Pey J, et al. The regime of desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements. Atmos Chem Phys. 2013;13:12135–12154.

Publication types

LinkOut - more resources