Site-specific activity of the acyltransferases HtrB1 and HtrB2 in Pseudomonas aeruginosa lipid A biosynthesis
- PMID: 26223882
- PMCID: PMC4626592
- DOI: 10.1093/femspd/ftv053
Site-specific activity of the acyltransferases HtrB1 and HtrB2 in Pseudomonas aeruginosa lipid A biosynthesis
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic Gram-negative pathogen associated with nosocomial infections, acute infections and chronic lung infections in patients with cystic fibrosis. The ability of PA to cause infection can be attributed to its ability to adapt to a multitude of environments. Modification of the lipid A portion of lipopolysaccharide (LPS) is a vital mechanism Gram-negative pathogens use to remodel the outer membrane in response to environmental stimuli. Lipid A, the endotoxic moiety of LPS, is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria making it a critical factor for bacterial adaptation. One way PA modifies its lipid A is through the addition of laurate and 2-hydroxylaurate. This secondary or late acylation is carried out by the acyltransferase, HtrB (LpxL). Analysis of the PA genome revealed the presence of two htrB homologs, PA0011 (htrB1) and PA3242 (htrB2). In this study, we were able to show that each gene identified is responsible for site-specific modification of lipid A. Additionally, deletions of either gene altered resistance to specific classes of antibiotics, cationic antimicrobial peptides and increased membrane permeability suggesting a role for these enzymes in maintaining optimal membrane organization and integrity.
Keywords: HtrB; LPS; Pseudomonas aeruginosa; acyltransferase; lipid A; membrane remodeling.
© FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Figures








Similar articles
-
The role of the temperature-regulated acyltransferase (PA3242) on growth, antibiotic resistance and virulence in Pseudomonas aeruginosa.Microb Pathog. 2016 Dec;101:126-135. doi: 10.1016/j.micpath.2016.09.019. Epub 2016 Oct 13. Microb Pathog. 2016. PMID: 27746380
-
Divergent Pseudomonas aeruginosa LpxO enzymes perform site-specific lipid A 2-hydroxylation.mBio. 2024 Feb 14;15(2):e0282323. doi: 10.1128/mbio.02823-23. Epub 2023 Dec 22. mBio. 2024. PMID: 38131669 Free PMC article.
-
Pleiotropic effects of temperature-regulated 2-OH-lauroytransferase (PA0011) on Pseudomonas aeruginosa antibiotic resistance, virulence and type III secretion system.Microb Pathog. 2016 Feb;91:5-17. doi: 10.1016/j.micpath.2015.11.003. Epub 2015 Nov 17. Microb Pathog. 2016. PMID: 26596709
-
The lipid A palmitoyltransferase PagP: molecular mechanisms and role in bacterial pathogenesis.Mol Microbiol. 2005 Aug;57(4):900-12. doi: 10.1111/j.1365-2958.2005.04711.x. Mol Microbiol. 2005. PMID: 16091033 Review.
-
Genome-wide analysis and literature-based survey of lipoproteins in Pseudomonas aeruginosa.Microbiology (Reading). 2010 Sep;156(Pt 9):2597-2607. doi: 10.1099/mic.0.040659-0. Epub 2010 Jul 8. Microbiology (Reading). 2010. PMID: 20616104 Review.
Cited by
-
Deletion of the β-acetoacetyl synthase FabY in Pseudomonas aeruginosa induces hypoacylation of lipopolysaccharide and increases antimicrobial susceptibility.Antimicrob Agents Chemother. 2014;58(1):153-61. doi: 10.1128/AAC.01804-13. Epub 2013 Oct 21. Antimicrob Agents Chemother. 2014. PMID: 24145528 Free PMC article.
-
A critical role for Vibrio parahaemolyticus LPS to mediate evasion of host immune response during infection.Proc Natl Acad Sci U S A. 2025 Aug 19;122(33):e2426547122. doi: 10.1073/pnas.2426547122. Epub 2025 Aug 13. Proc Natl Acad Sci U S A. 2025. PMID: 40802686 Free PMC article.
-
Unravelling the mechanisms causing murepavadin resistance in Pseudomonas aeruginosa: lipopolysaccharide alterations and its consequences.Front Cell Infect Microbiol. 2024 Dec 6;14:1446626. doi: 10.3389/fcimb.2024.1446626. eCollection 2024. Front Cell Infect Microbiol. 2024. PMID: 39711784 Free PMC article.
-
Genome-Wide Identification of Pseudomonas aeruginosa Genes Important for Desiccation Tolerance on Inanimate Surfaces.mSystems. 2022 Jun 28;7(3):e0011422. doi: 10.1128/msystems.00114-22. Epub 2022 Apr 26. mSystems. 2022. PMID: 35469420 Free PMC article.
-
Antibiotic resistance in Pseudomonas aeruginosa and adaptation to complex dynamic environments.Microb Genom. 2020 May;6(5):e000370. doi: 10.1099/mgen.0.000370. Epub 2020 Apr 29. Microb Genom. 2020. PMID: 32375975 Free PMC article. Review.
References
-
- Brozek KA, Raetz CR. Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate. J Biol Chem. 1990;265:15410–7. - PubMed
-
- Caroff M, Tacken A, Szabo L. Detergent-accelerated hydrolysis of bacterial endotoxins and determination of the anomeric configuration of the glycosyl phosphate present in the ‘isolated lipid A’ fragment of the Bordetella pertussis endotoxin. Carbohyd Res. 1988;175:273–82. - PubMed
-
- Choi KH, Kumar A, Schweizer HP. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Meth. 2006;64:391–7. - PubMed
-
- Clementz T, Bednarski JJ, Raetz CR. Function of the htrB high temperature requirement gene of Escherichia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J Biol Chem. 1996;271:12095–102. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases