Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015;303(1):521-529.
doi: 10.1007/s10967-014-3362-0. Epub 2014 Aug 1.

Mineralogy and uranium leaching of ores from Triassic Peribaltic sandstones

Affiliations

Mineralogy and uranium leaching of ores from Triassic Peribaltic sandstones

Dorota Gajda et al. J Radioanal Nucl Chem. 2015.

Abstract

The recovery of uranium and other valuable metals from Polish Peribaltic sandstones were examined. The solid-liquid extraction is the first stage of the technology of uranium production and it is crucial for the next stages of processing. In the laboratory experiments uranium was leached with efficiencies 71-100 % by acidic lixiviants. Satisfactory results were obtained for the alkaline leaching process. Almost 100 % of uranium was leached with alkaline carbonate solution. In post leaching solutions only uranium and small amounts of vanadium were present.

Keywords: Acid leaching; Alkaline leaching; Sandstones; Uranium.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Uranium mineralization in the form of rhomboedric crystals (probably coffinite) in the highly porous sandstones with carbonate cement
Fig. 2
Fig. 2
Uranium mineralization fills spaces between micas crystals
Fig. 3
Fig. 3
Minimal and maximal values of efficiencies of leaching of metals from sandstones deriving from Peribaltic Syneclise (samples from different boreholes, min: sample 21/10/160, max: sample 21/10/140, see Table 2) under different process conditions: a 10 % HCl, 30 % H2O2, 60 °C, 1 h, agitation rate: 500 rpm; b 10 % H2SO4, MnO2, 60 °C, 1 h, agitation rate: 500 rpm
Fig. 4
Fig. 4
Effect of sulphuric acid concentration on leaching efficiency (sample 21/10/160). Process conditions: particle size: 0–0.2 mm, liquid/solid ratio of 8:1 (vol./wt. basis), oxidizing agent MnO2, 60 °C, 1 h, agitation rate: 500 rpm
Fig. 5
Fig. 5
Effect of hydrochloric acid concentration on leaching efficiency (sample 21/10/160). Process conditions: particle size: 0–0.2 mm, liquid/solid ratio of 8:1 (vol./wt. basis), oxidizing agent: H2O2, 60 °C, 1 h, agitation rate: 500 rpm
Fig. 6
Fig. 6
Minimal and maximal values of efficiency of leaching of metals from sandstones deriving from Peribaltic Syneclise (samples from different boreholes, min: sample 21/10/160, max: sample 21/10/140, see Table 2) under different process conditions: a 8 % NaOH/18 % Na2CO3, 30 % H2O2, 60 °C, 1 h, agitation rate: 500 rpm, b 5 % Na2CO3/NaHCO3, KMnO4, 60 °C, 1 h, agitation rate: 500 rpm
Fig. 7
Fig. 7
Effect of time on uranium leaching efficiency (sample 21/10/140). Process conditions: particle size: 0–0.2 mm, liquid/solid ratio of 8:1 (vol./wt. basis), 60 °C, agitation rate: 500 rpm, lixiviants: a 10 % HCl b 10 % H2SO4, c 8 % NaOH/18 % Na2CO3 d 5 % Na2CO3/NaHCO3
Fig. 8
Fig. 8
Effect of temperature on leaching efficiency (sample 21/10/166). Process conditions: particle size: 0–0.2 mm, 10 % H2SO4, liquid/solid ratio of 8:1 (vol./wt. basis), oxidizing agent: MnO2, 1 h, agitation rate: 500 rpm
Fig. 9
Fig. 9
Effect of liquid/solid ratio (vol./wt. basis) on uranium leaching efficiency (sample 21/10/141). Process conditions: particle size: 0–0.2 mm,10 % H2SO4, oxidizing agent: MnO2, 60 °C,1 h, agitation rate: 500 rpm
Fig. 10
Fig. 10
Effect of particle size on uranium leaching efficiency (sample 21/10/161). Process conditions: 10 % H2SO4, MnO2, liquid/solid ratio of 8:1 (vol./wt. basis), 60 °C, 1 h, agitation rate: 500 rpm
Fig. 11
Fig. 11
Effect of oxidizing agent on uranium leaching efficiency (sample 21/10/169). Process conditions: a particle size: 0–0.2 mm, 60 °C, 1 h, agitation rate: 500 rpm, b particle size: 0–0.2 mm, 60 °C, 1 h, agitation rate: 500 rpm
Fig. 12
Fig. 12
Effect of concentration of iron in ore on uranium leaching efficiency. Process conditions: particle size: 0–0.2 mm, 10 % H2SO4, liquid/solid ratio of 8:1 (vol./wt. basis), 60 °C, 1 h, agitation rate: 500 rpm
Fig. 13
Fig. 13
Metal extraction behavior with distilled water and oxidants. Process conditions: particle size: 0–0.2 mm, liquid/solid ratio of 8:1 (vol./wt. basis), 60 °C, 1 h, agitation rate: 500 rpm
Fig. 14
Fig. 14
Metal extraction behavior with 10 % NH4Cl/H2O2 and HNO3, pH 3, without oxidants. Process conditions: particle size: 0–0.2 mm, liquid/solid ratio of 8:1 (vol./wt. basis), 60 °C, 1 h, agitation rate: 500 rpm

References

    1. Edwards CR, Oliver AJ. Uranium processing: a review of current methods and technology. JOM. 2000;52:12–20. doi: 10.1007/s11837-000-0181-2. - DOI
    1. Lunt D, Boshoff P, Boylett M, El-Ansary Z. Uranium extraction: the key process drivers. J South Afr Inst Min Metall. 2007;107:419–426.
    1. Lottering MJ, Lorenzen L, Phala NS, Smit JT, Schalkwyk GAC. Mineralogy and uranium leaching response of low grade South African ores. Miner Eng. 2008;21:16–22. doi: 10.1016/j.mineng.2007.06.006. - DOI
    1. Guettaf H, Becis A, Ferhat K, Hanou K, Bouchiha D, Yakoubi K, Ferrad F. Concentration-purification of uranium from an acid leaching solution. Phys Procedia. 2009;2:765–771. doi: 10.1016/j.phpro.2009.11.023. - DOI
    1. Kim JS, Chung KW, Lee HI, Yoon HS, Kumar JR. Leaching behaviour of uranium and vanadium using strong sulphuric acid from Korean black shale ore. J Radioanal Nucl Chem. 2014;299:81–87. doi: 10.1007/s10967-013-2732-3. - DOI

LinkOut - more resources