Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Dec;226(Pt A):24-36.
doi: 10.1016/j.cis.2015.07.002. Epub 2015 Jul 22.

Heteroaggregation of nanoparticles with biocolloids and geocolloids

Affiliations
Free article
Review

Heteroaggregation of nanoparticles with biocolloids and geocolloids

Hongtao Wang et al. Adv Colloid Interface Sci. 2015 Dec.
Free article

Abstract

The application of nanoparticles has raised concern over the safety of these materials to human health and the ecosystem. After release into an aquatic environment, nanoparticles are likely to experience heteroaggregation with biocolloids, geocolloids, natural organic matter (NOM) and other types of nanoparticles. Heteroaggregation is of vital importance for determining the fate and transport of nanoparticles in aqueous phase and sediments. In this article, we review the typical cases of heteroaggregation between nanoparticles and biocolloids and/or geocolloids, mechanisms, modeling, and important indicators used to determine heteroaggregation in aqueous phase. The major mechanisms of heteroaggregation include electric force, bridging, hydrogen bonding, and chemical bonding. The modeling of heteroaggregation typically considers DLVO, X-DLVO, and fractal dimension. The major indicators for studying heteroaggregation of nanoparticles include surface charge measurements, size measurements, observation of morphology of particles and aggregates, and heteroaggregation rate determination. In the end, we summarize the research challenges and perspective for the heteroaggregation of nanoparticles, such as the determination of αhetero values and heteroaggregation rates; more accurate analytical methods instead of DLS for heteroaggregation measurements; sensitive analytical techniques to measure low concentrations of nanoparticles in heteroaggregation systems; appropriate characterization of NOM at the molecular level to understand the structures and fractionation of NOM; effects of different types, concentrations, and fractions of NOM on the heteroaggregation of nanoparticles; the quantitative adsorption and desorption of NOM onto the surface of nanoparticles and heteroaggregates; and a better understanding of the fundamental mechanisms and modeling of heteroaggregation in natural water which is a complex system containing NOM, nanoparticles, biocolloids and geocolloids.

Keywords: Biocolloid; Geocolloid; Heteroaggregation; NOM; Nanoparticles.

PubMed Disclaimer

Publication types