Age-Dependent TDP-43-Mediated Motor Neuron Degeneration Requires GSK3, hat-trick, and xmas-2
- PMID: 26234214
- PMCID: PMC4546534
- DOI: 10.1016/j.cub.2015.06.045
Age-Dependent TDP-43-Mediated Motor Neuron Degeneration Requires GSK3, hat-trick, and xmas-2
Abstract
The RNA-processing protein TDP-43 is central to the pathogenesis of amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron (MN) disease. TDP-43 is conserved in Drosophila, where it has been the topic of considerable study, but how TDP-43 mutations lead to age-dependent neurodegeneration is unclear and most approaches have not directly examined changes in MN morphology with age. We used a mosaic approach to study age-dependent MN loss in the adult fly leg where it is possible to resolve single motor axons, NMJs and active zones, and perform rapid forward genetic screens. We show that expression of TDP-43(Q331K) caused dying-back of NMJs and axons, which could not be suppressed by mutations that block Wallerian degeneration. We report the identification of three genes that suppress TDP-43 toxicity, including shaggy/GSK3, a known modifier of neurodegeneration. The two additional novel suppressors, hat-trick and xmas-2, function in chromatin modeling and RNA export, two processes recently implicated in human ALS. Loss of shaggy/GSK3, hat-trick, or xmas-2 does not suppress Wallerian degeneration, arguing TDP-43(Q331K)-induced and Wallerian degeneration are genetically distinct processes. In addition to delineating genetic factors that modify TDP-43 toxicity, these results establish the Drosophila adult leg as a valuable new tool for the in vivo study of adult MN phenotypes.
Copyright © 2015 Elsevier Ltd. All rights reserved.
Conflict of interest statement
The authors report no conflicts of interest.
Figures



Comment in
-
Neurodegeneration: A Leg Up on TDP-43.Curr Biol. 2015 Aug 17;25(16):R728-31. doi: 10.1016/j.cub.2015.06.064. Curr Biol. 2015. PMID: 26294190
References
-
- Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–133. - PubMed
-
- Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and biophysical research communications. 2006;351:602–611. - PubMed
-
- Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature genetics. 2008;40:572–574. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous