Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep;83(6):1046-58.
doi: 10.1111/tpj.12948.

The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection

Affiliations
Free article

The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection

Hsin-Yi Chen et al. Plant J. 2015 Sep.
Free article

Abstract

Plant roots secrete a significant portion of their assimilated carbon into the rhizosphere. The putative sugar transporter SWEET2 is highly expressed in Arabidopsis roots. Expression patterns of SWEET2-β-glucuronidase fusions confirmed that SWEET2 accumulates highly in root cells and thus may contribute to sugar secretion, specifically from epidermal cells of the root apex. SWEET2-green fluorescent protein fusions localized to the tonoplast, which engulfs the major sugar storage compartment. Functional analysis of SWEET2 activity in yeast showed low uptake activity for the glucose analog 2-deoxyglucose, consistent with a role in the transport of glucose across the tonoplast. Loss-of-function sweet2 mutants showed reduced tolerance to excess glucose, lower glucose accumulation in leaves, and 15-25% higher glucose-derived carbon efflux from roots, suggesting that SWEET2 has a role in preventing the loss of sugar from root tissue. SWEET2 root expression was induced more than 10-fold during Pythium infection. Importantly, sweet2 mutants were more susceptible to the oomycete, showing impaired growth after infection. We propose that root-expressed vacuolar SWEET2 modulates sugar secretion, possibly by reducing the availability of glucose sequestered in the vacuole, thereby limiting carbon loss to the rhizosphere. Moreover, the reduced availability of sugar in the rhizosphere due to SWEET2 activity contributes to resistance to Pythium.

Keywords: Arabidopsis thaliana; SWEET; carbon sequestration; pathogen resistance; plant-microbe interactions; rhizosphere; sugar efflux; sugar homeostasis; tonoplast transport.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources