Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2015 Aug 5;16(1):577.
doi: 10.1186/s12864-015-1682-2.

Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton

Affiliations
Meta-Analysis

Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton

Jinfa Zhang et al. BMC Genomics. .

Abstract

Background: Verticillium wilt (VW) and Fusarium wilt (FW), caused by the soil-borne fungi Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, respectively, are two most destructive diseases in cotton production worldwide. Root-knot nematodes (Meloidogyne incognita, RKN) and reniform nematodes (Rotylenchulus reniformis, RN) cause the highest yield loss in the U.S. Planting disease resistant cultivars is the most cost effective control method. Numerous studies have reported mapping of quantitative trait loci (QTLs) for disease resistance in cotton; however, very few reliable QTLs were identified for use in genomic research and breeding.

Results: This study first performed a 4-year replicated test of a backcross inbred line (BIL) population for VW resistance, and 10 resistance QTLs were mapped based on a 2895 cM linkage map with 392 SSR markers. The 10 VW QTLs were then placed to a consensus linkage map with other 182 VW QTLs, 75 RKN QTLs, 27 FW QTLs, and 7 RN QTLs reported from 32 publications. A meta-analysis of QTLs identified 28 QTL clusters including 13, 8 and 3 QTL hotspots for resistance to VW, RKN and FW, respectively. The number of QTLs and QTL clusters on chromosomes especially in the A-subgenome was significantly correlated with the number of nucleotide-binding site (NBS) genes, and the distribution of QTLs between homeologous A- and D- subgenome chromosomes was also significantly correlated.

Conclusions: Ten VW resistance QTL identified in a 4-year replicated study have added useful information to the understanding of the genetic basis of VW resistance in cotton. Twenty-eight disease resistance QTL clusters and 24 hotspots identified from a total of 306 QTLs and linked SSR markers provide important information for marker-assisted selection and high resolution mapping of resistance QTLs and genes. The non-overlapping of most resistance QTL hotspots for different diseases indicates that their resistances are controlled by different genes.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
A meta-analysis of quantitative trait loci (QTLs) for resistance to Verticillium wilt (VW), Fusarium wilt (FW), root-knot nematodes (RKN), reniform nematodes (RN), and black root rot (BRR). When older markers with multiple positions along a chromosome were used as the sole means to position a QTL and the markers did not appear in the cotton marker database those QTL were not able to be placed on the (“Guazuncho2” (G. hirsutum) x “VH8-4602” (G. barbadense)) map. For this reason some QTL identified from previous studies were not included in this meta-analysis and do not appear on the combined QTL linkage map

References

    1. Hillocks RJ. Cotton diseases. Wallingford, UK: CAB International; 1992.
    1. Kirkpatrick TL, Rothrock CS. Compendium of cotton diseases. St. Paul, MN: Amer. Phytopath. Soc; 2001.
    1. Blasingame D, Patel MV . Cotton disease loss estimate committee report. San Antonio, TX: Proc, Beltwide Cotton Conf; 2013. pp. 1242–1245.
    1. Zhang JF, Fang H, Zhou HP, Sanogo S, Ma ZY. Genetics, breeding, and marker-assisted selection for Verticillium wilt resistance in cotton. Crop Sci. 2014;54:1289–1303. doi: 10.2135/cropsci2013.08.0550. - DOI
    1. Sanogo S, Zhang JF. Resistance sources, resistance screening techniques and disease management for Fusarium wilt in cotton. Euphytica. 2015 (Accepted)

Publication types

Substances