Impedance analysis of a tight epithelium using a distributed resistance model
- PMID: 262419
- PMCID: PMC1328521
- DOI: 10.1016/S0006-3495(79)85250-9
Impedance analysis of a tight epithelium using a distributed resistance model
Abstract
This paper develops techniques for equivalent circuit analysis of tight epithelia by alternating-current impedance measurements, and tests these techniques on rabbit urinary bladder. Our approach consists of measuring transepithelial impedance, also measuring the DC voltage-divider ratio with a microelectrode, and extracting values of circuit parameters by computer fit of the data to an equivalent circuit model. We show that the commonly used equivalent circuit models of epithelia give significant misfits to the impedance data, because these models (so-called "lumped models") improperly represent the distributed resistors associated with long and narrow spaces such as lateral intercellular spaces (LIS). We develop a new "distributed model" of an epithelium to take account of these structures and thereby obtain much better fits to the data. The extracted parameters include the resistance and capacitance of the apical and basolateral cell membranes, the series resistance, and the ratio of the cross-sectional area to the length of the LIS. The capacitance values yield estimates of real area of the apical and basolateral membranes. Thus, impedance analysis can yield morphological information (configuration of the LIS, and real membrane areas) about a living tissue, independently of electron microscopy. The effects of transport-modifying agents such as amiloride and nystatin can be related to their effects on particular circuit elements by extracting parameter values from impedance runs before and during application of the agent. Calculated parameter values have been validated by independent electrophysiological and morphological measurements.
Similar articles
-
Transport-dependent alterations of membrane properties of mammalian colon measured using impedance analysis.J Membr Biol. 1987;95(1):21-35. doi: 10.1007/BF01869627. J Membr Biol. 1987. PMID: 3560207
-
Use of AC impedance analysis to study membrane changes related to acid secretion in amphibian gastric mucosa.Biophys J. 1983 Feb;41(2):167-78. doi: 10.1016/S0006-3495(83)84417-8. Biophys J. 1983. PMID: 6601499 Free PMC article.
-
The mechanism of Na+ transport by rabbit urinary bladder.J Membr Biol. 1976 Aug 27;28(1):41-70. doi: 10.1007/BF01869690. J Membr Biol. 1976. PMID: 966267
-
Membrane electrical parameters in turtle bladder measured using impedance-analysis techniques.J Membr Biol. 1986;92(1):9-19. doi: 10.1007/BF01869011. J Membr Biol. 1986. PMID: 3746893
-
From TER to trans- and paracellular resistance: lessons from impedance spectroscopy.Ann N Y Acad Sci. 2012 Jun;1257:142-51. doi: 10.1111/j.1749-6632.2012.06540.x. Ann N Y Acad Sci. 2012. PMID: 22671600 Review.
Cited by
-
Discerning apical and basolateral properties of HT-29/B6 and IPEC-J2 cell layers by impedance spectroscopy, mathematical modeling and machine learning.PLoS One. 2013 Jul 1;8(7):e62913. doi: 10.1371/journal.pone.0062913. Print 2013. PLoS One. 2013. PMID: 23840862 Free PMC article.
-
Na+ transport and impedance properties of cultured renal (A6 and 2F3) epithelia.J Membr Biol. 1992 Feb;125(3):273-85. doi: 10.1007/BF00236439. J Membr Biol. 1992. PMID: 1556737
-
Formation and maintenance of blood-urine barrier in urothelium.Protoplasma. 2010 Oct;246(1-4):3-14. doi: 10.1007/s00709-010-0112-1. Epub 2010 Jun 4. Protoplasma. 2010. PMID: 20521071 Review.
-
Stoichiometries of arsenazo III-Ca complexes.Biophys J. 1983 Sep;43(3):355-69. doi: 10.1016/S0006-3495(83)84359-8. Biophys J. 1983. PMID: 6626673 Free PMC article.
-
Impedance analysis in epithelia and the problem of gastric acid secretion.J Membr Biol. 1983;72(1-2):17-41. doi: 10.1007/BF01870312. J Membr Biol. 1983. PMID: 6343605 Review. No abstract available.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources