Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy
- PMID: 26241917
- DOI: 10.1016/j.colsurfb.2015.07.013
Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy
Abstract
In order to achieve long circulation time and high drug accumulation in the tumor sites via the EPR effects, anticancer drugs have to be protected by non-fouling polymers such as poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO), dextran, and poly(acrylic acid) (PAA). However, the dense layer of stealth polymer also prohibits efficient uptake of anticancer drugs by target cancer cells. For cancer therapy, it is often more desirable to accomplish rapid cellular uptake after anticancer drugs arriving at the pathological site, which could on one hand maximize the therapeutic efficacy and on the other hand reduce probability of drug resistance in cells. In this review, special attention will be focused on the recent potential strategies that can enable drug-loaded polymeric nanoparticles to rapidly recognize cancer cells, leading to enhanced internalization.
Keywords: Anticancer; Internalization enhancement; Nanoparticles; Targeting.
Copyright © 2015 Elsevier B.V. All rights reserved.
Similar articles
-
Poly(ethylene glycol)-block-poly(ε-caprolactone)-and phospholipid-based stealth nanoparticles with enhanced therapeutic efficacy on murine breast cancer by improved intracellular drug delivery.Int J Nanomedicine. 2015 Mar 5;10:1791-804. doi: 10.2147/IJN.S75186. eCollection 2015. Int J Nanomedicine. 2015. PMID: 25784805 Free PMC article.
-
Role of integrated cancer nanomedicine in overcoming drug resistance.Adv Drug Deliv Rev. 2013 Nov;65(13-14):1784-802. doi: 10.1016/j.addr.2013.07.012. Epub 2013 Jul 21. Adv Drug Deliv Rev. 2013. PMID: 23880506 Review.
-
Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery.Pharm Res. 2007 Aug;24(8):1405-14. doi: 10.1007/s11095-007-9284-6. Epub 2007 Mar 29. Pharm Res. 2007. PMID: 17393074 Review.
-
Carbon nanotubes for delivery of small molecule drugs.Adv Drug Deliv Rev. 2013 Dec;65(15):1964-2015. doi: 10.1016/j.addr.2013.08.005. Epub 2013 Aug 14. Adv Drug Deliv Rev. 2013. PMID: 23954402 Review.
-
Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone.Int J Nanomedicine. 2017 May 8;12:3561-3575. doi: 10.2147/IJN.S133787. eCollection 2017. Int J Nanomedicine. 2017. PMID: 28507436 Free PMC article.
Cited by
-
Recent developments in cancer diagnosis and treatment using nanotechnology.Ann Med Surg (Lond). 2024 Jun 17;86(8):4541-4554. doi: 10.1097/MS9.0000000000002271. eCollection 2024 Aug. Ann Med Surg (Lond). 2024. PMID: 39118776 Free PMC article. Review.
-
Local and Systemic Delivery of the BimS Gene Nano-Complex for Efficient Oral Squamous Cell Carcinoma Therapy.Int J Nanomedicine. 2022 Jul 4;17:2925-2941. doi: 10.2147/IJN.S357702. eCollection 2022. Int J Nanomedicine. 2022. PMID: 35814613 Free PMC article.
-
Drug Delivery Systems Based on Dendritic-Cell-Derived Exosomes.Pharmaceutics. 2025 Mar 3;17(3):326. doi: 10.3390/pharmaceutics17030326. Pharmaceutics. 2025. PMID: 40142991 Free PMC article. Review.
-
Dual-Drug Delivery by Anisotropic and Uniform Hybrid Nanostructures: A Comparative Study of the Function and Substrate-Drug Interaction Properties.Pharmaceutics. 2023 Apr 11;15(4):1214. doi: 10.3390/pharmaceutics15041214. Pharmaceutics. 2023. PMID: 37111700 Free PMC article. Review.
-
Engineering exosomes as refined biological nanoplatforms for drug delivery.Acta Pharmacol Sin. 2017 Jun;38(6):754-763. doi: 10.1038/aps.2017.12. Epub 2017 Apr 10. Acta Pharmacol Sin. 2017. PMID: 28392567 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources