Corticotropin Releasing Factor Binding Protein and CRF2 Receptors in the Ventral Tegmental Area: Modulation of Ethanol Binge Drinking in C57BL/6J Mice
- PMID: 26247973
- PMCID: PMC4558332
- DOI: 10.1111/acer.12825
Corticotropin Releasing Factor Binding Protein and CRF2 Receptors in the Ventral Tegmental Area: Modulation of Ethanol Binge Drinking in C57BL/6J Mice
Abstract
Background: Most studies with corticotropin releasing factor (CRF) and ethanol (EtOH) consumption have focused on CRF type 1 (CRF1 ) receptors; less is known about other components of the CRF system, such as the CRF type 2 (CRF2 ) receptors and the CRF binding protein (CRFBP). In humans, several nucleotide polymorphisms in the CRFBP gene have been associated with EtOH abuse.
Methods: The role of the CRFBP within the ventral tegmental area (VTA) and the central nucleus of the amygdala (CeA) was investigated in C57BL/6J mice exposed to an EtOH binge drinking paradigm (drinking in the dark [DID]), or to a dependence-producing drinking protocol (2-bottle choice, intermittent access to alcohol [IAA]) for 4 weeks. Potential interactions between VTA CRFBP and CRF2 receptors on EtOH binge drinking were also assessed. Mice were microinjected with the CRFBP antagonist CRF fragment 6-33 (CRF6-33 ) into the VTA or CeA, or with the CRF2 antagonist astressin-2B (A2B) alone or in combination with CRF6-33 into the VTA, and had access to 20% (w/v) EtOH for 4 hours (DID). Separate cohorts of mice received vehicle and doses of CRF6-33 into the VTA or CeA and had access to EtOH/water for 24 hours (IAA). Blood EtOH concentrations (BECs) were measured, and signs of withdrawal by handling-induced convulsions were determined.
Results: Intra-VTA CRF6-33 and A2B reduced EtOH intake dose dependently in mice during DID. Furthermore, a combination of a subeffective dose of CRF6-33 and a lower dose of A2B promoted additive effects in attenuating EtOH binge drinking. Intra-VTA CRF6-33 did not affect EtOH consumption in mice given IAA, and intra-CeA CRF6-33 did not change alcohol consumption in both models of drinking. DID and IAA promoted pharmacologically relevant BECs; however, only mice given IAA exhibited convulsive events during withdrawal.
Conclusions: These findings suggest that VTA CRFBP is involved in the initial stages of escalated EtOH drinking by mechanisms that may involve CRF2 receptors.
Keywords: Alcohol; CRF2 Receptor; Corticotropin Releasing Factor Binding Protein; Drinking in the Dark; Ventral Tegmental Area.
Copyright © 2015 by the Research Society on Alcoholism.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Comment in
-
Novel Roles for CRF-Binding Protein and CRF Receptor 2 in Binge Drinking.Alcohol Clin Exp Res. 2015 Dec;39(12):2296-8. doi: 10.1111/acer.12897. Epub 2015 Oct 28. Alcohol Clin Exp Res. 2015. PMID: 26509254 Free PMC article. No abstract available.
References
-
- Avena NM, Long KA, Hoebel BG. Sugar-dependent rats show enhanced responding for sugar after abstinence: evidence of a sugar deprivation effect. Physiol Behav. 2005;84:359–362. - PubMed
-
- Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol. 2004;44:525–557. - PubMed
-
- Behan DP, De Souza EB, Lowry PJ, Potter E, Sawchenko P, Vale WW. Corticotropin releasing factor (CRF) binding protein: a novel regulator of CRF and related peptides. Front Neuroendocrinol. 1995a;16:362–382. - PubMed
-
- Behan DP, Heinrichs SC, Troncoso JC, Liu XJ, Kawas CH, Ling N, De Souza EB. Displacement of corticotropin releasing factor from its binding protein as a possible treatment for Alzheimer's disease. Nature. 1995b;378:284–287. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
