Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Nov 1:56:37-47.
doi: 10.1016/j.msec.2015.05.083. Epub 2015 Jun 11.

β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering

Affiliations

β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering

Kai Yang et al. Mater Sci Eng C Mater Biol Appl. .

Abstract

Despite good biocompatibility and osteoconductivity, porous β-TCP scaffolds still lack the structural stability and mechanical robustness, which greatly limit their application in the field of bone regeneration. The hybridization of β-TCP with conventional synthetic biodegradable PLA and PCL only produced a limited toughening effect due to the plasticity of the polymers in nature. In this study, a β-TCP/poly(glycerol sebacate) scaffold (β-TCP/PGS) with well interconnected porous structure and robust mechanical property was prepared. Porous β-TCP scaffold was first prepared with polyurethane sponge as template and then impregnated into PGS pre-polymer solution with moderate viscosity, followed by in situ heat crosslinking and freezing-drying process. The results indicated that the freezing-drying under vacuum process could further facilitate crosslinking of PGS and formation of Ca(2+)-COO(-) ionic complexing and thus synergistically improved the mechanical strength of the β-TCP/PGS with in situ heat crosslinking. Particularly, the β-TCP/PGS with 15% PGS content after heat crosslinking at 130°C and freezing-drying at -50°C under vacuum exhibited an elongation at break of 375±25% and a compressive strength of 1.73MPa, 3.7-fold and 200-fold enhancement compared to the β-TCP, respectively. After the abrupt drop of compressive load, the β-TCP/PGS scaffolds exhibited a full recovery of their original shape. More importantly, the PGS polymer in the β-TCP/PGS scaffolds could direct the biomineralization of Ca/P from particulate shape into a nanofiber-interweaved structure. Furthermore, the β-TCP/PGS scaffolds allowed for cell penetration and proliferation, indicating a good cytobiocompatibility. It is believed that β-TCP/PGS scaffolds have great potential application in rigid tissue regeneration.

Keywords: Bone regeneration; Poly(glycerol sebacate); Porous scaffold; Robust mechanical property; β-Tricalcium phosphate.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources