Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Nov-Dec;21(6):748-61.
doi: 10.1093/humupd/dmv038. Epub 2015 Aug 7.

Menstrual physiology: implications for endometrial pathology and beyond

Affiliations
Review

Menstrual physiology: implications for endometrial pathology and beyond

Jacqueline A Maybin et al. Hum Reprod Update. 2015 Nov-Dec.

Abstract

Background: Each month the endometrium becomes inflamed, and the luminal portion is shed during menstruation. The subsequent repair is remarkable, allowing implantation to occur if fertilization takes place. Aberrations in menstrual physiology can lead to common gynaecological conditions, such as heavy or prolonged bleeding. Increased knowledge of the processes involved in menstrual physiology may also have translational benefits at other tissue sites.

Methods: Pubmed and Cochrane databases were searched for all original and review articles published in English until April 2015. Search terms included 'endometrium', 'menstruation', 'endometrial repair', 'endometrial regeneration' 'angiogenesis', 'inflammation' and 'heavy menstrual bleeding' or 'menorrhagia'.

Results: Menstruation occurs naturally in very few species. Human menstruation is thought to occur as a consequence of preimplantation decidualization, conferring embryo selectivity and the ability to adapt to optimize function. We highlight how current and future study of endometrial inflammation, vascular changes and repair/regeneration will allow us to identify new therapeutic targets for common gynaecological disorders. In addition, we describe how increased knowledge of this endometrial physiology will have many translational applications at other tissue sites. We highlight the clinical applications of what we know, the key questions that remain and the scientific and medical possibilities for the future.

Conclusions: The study of menstruation, in both normal and abnormal scenarios, is essential for the production of novel, acceptable medical treatments for common gynaecological complaints. Furthermore, collaboration and communication with specialists in other fields could significantly advance the therapeutic potential of this dynamic tissue.

Keywords: angiogenesis; endometrium; hypoxia; inflammation; progesterone.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The relevance of menstrual physiology. The perimenstrual endometrium (centre) is exposed to inflammation and hypoxia. Stem cells and EMT are involved at menses to enable scar-free repair (light blue). Aberrations in these processes can lead to gynaecological disorders (mid-blue). Study of endometrial physiology may help delineate the pathogenesis of a number of disorders in other tissue sites (dark blue).
Figure 2
Figure 2
Leukocyte trafficking in the perimenstrual human endometrium (derived from data published and reviews by Bonatz et al., 1992; Salamonsen and Lathbury, 2000; Moffett-King, 2002; Thiruchelvam et al., 2013). Top panel: Sex steroid profiles in the luteo-follicular transition (perimenstrual ‘window’). Bottom panel: Overview of leukocyte traffic in the endometrium with transition from secretory phase through menses/endometrial repair to the proliferative phase of next cycle. Size of cell image reflects abundance.
Figure 3
Figure 3
Endometrial coagulation pathways. Immediate: A platelet plug forms rapidly, relying on interactions with tissue factor, vWF and collagen. Subsequent: intrinsic and/or extrinsic activation of coagulation pathways result in formation of a fibrin clot to ensure haemostasis. Fibrinolysis drives the degradation of the fibrin clot. t-PA and u-PA convert plasminogen to plasmin, which breaks down the fibrin clot. PAI converts plasmin back to plasminogen.

References

    1. Abberton KM, Healy DL, Rogers PA. Smooth muscle alpha actin and myosin heavy chain expression in the vascular smooth muscle cells surrounding human endometrial arterioles. Hum Reprod 1999a;14:3095–3100. - PubMed
    1. Abberton KM, Taylor NH, Healy DL, Rogers PA. Vascular smooth muscle cell proliferation in arterioles of the human endometrium. Hum Reprod 1999b;14:1072–1079. - PubMed
    1. Ashkar AA, Black GP, Wei Q, He H, Liang L, Head JR, Croy BA. Assessment of requirements for IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy. J Immunol 2003;171:2937–2944. - PubMed
    1. Baird DT, Cameron ST, Critchley HO, Drudy TA, Howe A, Jones RL, Lea RG, Kelly RW. Prostaglandins and menstruation. Eur J Obstet Gynecol Reprod Biol 1996;70:15–17. - PubMed
    1. Bamberger AM, Milde-Langosch K, Loning T, Bamberger CM. The glucocorticoid receptor is specifically expressed in the stromal compartment of the human endometrium. J Clin Endocrinol Metab 2001;86:5071–5074. - PubMed

Publication types