Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep;93(3 Suppl):87-98.
doi: 10.4269/ajtmh.15-0049. Epub 2015 Aug 10.

Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View Across the International Centers of Excellence for Malaria Research

Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View Across the International Centers of Excellence for Malaria Research

Jane M Carlton et al. Am J Trop Med Hyg. 2015 Sep.

Abstract

The study of the three protagonists in malaria-the Plasmodium parasite, the Anopheles mosquito, and the human host-is key to developing methods to control and eventually eliminate the disease. Genomic technologies, including the recent development of next-generation sequencing, enable interrogation of this triangle to an unprecedented level of scrutiny, and promise exciting progress toward real-time epidemiology studies and the study of evolutionary adaptation. We discuss the use of genomics by the International Centers of Excellence for Malaria Research, a network of field sites and laboratories in malaria-endemic countries that undertake cutting-edge research, training, and technology transfer in malarious countries of the world.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Quantification of multiclonal Plasmodium chabaudi mixtures using Ion Torrent amplicon sequencing and quantitative polymerase chain reaction (qPCR). Stacked plots representing proportion of P. chabaudi clones ER (black), BC (gray), and AT (white) obtained for two sets of parasite mixtures, shown in panels (A) and (B), containing low concentrations of the ER and AT clones, respectively. qPCR replicates are represented as qPCR_1 and qPCR_2, whereas sequencing replicates are grouped as Run1 and Run2 (biological replicates) and Lane1 and Lane2 (technical replicates).
Figure 2.
Figure 2.
A simple and efficient filtering procedure to remove leukocytes from small volumes of Plasmodium-infected venous blood. The left panel (A) shows how to prepare commercially available leukocyte depletion filters (Fresenius Kabi BioR 01 Plus) for removing leukocytes. Note that the tubing must be cut with a scissor as indicated, to remove the storage bag and the adaptor from the filtering device. The right panel (B) shows how the adapted filters are used, in a laminar flow safety hood. A 10-mL syringe is used to apply acid citrate dextrose (ACD) treated blood samples, whereas a second 10-mL syringe is adapted to the end of the tubing to recover the filtered (leukocyte-depleted) material. After the filtering procedure, the leukocyte depletion filter is washed extensively with RPMI 1640 medium to recover red blood cells that have been retained in the tubing.
Figure 3.
Figure 3.
Screen shots from PlasmoDB illustrating methods to access single-nucleotide polymorphism (SNP) data from International Centers of Excellence for Malaria Research (ICEMR) projects. (A) PlasmoDB home page showing where SNP data can be accessed (red rectangles). (B) Map of the geographic distribution of sequenced Plasmodium isolates from ICEMR locations. (C) Sequenced isolates can be compared in PlasmoDB using the search “Identify SNPs based on differences between groups of isolates.” (D) Metadata characteristics such as geographical location can be leveraged to identify SNPs that differentiate isolates from Peru and Colombia. (E) Results are returned in a table containing the location of the SNP and various SNP statistics. (F) The sequence alignment around any SNP can be visualized in the PlasmoDB genome browser.
Figure 4.
Figure 4.
Screen shots from PlasmoDB depicting a search for genes containing at least 20 non-synonymous SNPs based on data from ICEMR isolates. (A) The search for genes based on SNP characteristics allows filtering of isolates based on metadata, such as geographic location, and defining the type of SNPs of interest. (B) Results are returned in a table that shows which genes contain the SNPs of interest.

References

    1. Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RMR, Crabb BS, del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kooij TWA, Korsinczky M, Meyer EVS, Nene V, Paulsen I, White O, Ralph SA, Ren QH, Sargeant TJ, Salzberg SL, Stoeckert CJ, Sullivan SA, Yamamoto MM, Hoffman SL, Wortman JR, Gardner MJ, Galinski MR, Barnwell JW, Fraser-Liggett CM. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008;455:757–763. - PMC - PubMed
    1. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419:498–511. - PMC - PubMed
    1. Pain A, Böhme U, Berry AE, Mungall K, Finn RD, Jackson AP, Mourier T, Mistry J, Pasini EM, Adlem E, Aslett MA, Balasubrammaniam S, Borgwardt K, Brooks K, Carret C, Cherevach I, Chillingworth T, Galinski MR, Hall N, Harper D, Harris D, Hauser H, Ivens A, Janssen CS, Keane T, Larke N, Lapp S, Marti M, Moule S, Meyer IM, Ormond D, Peters N, Sanders M, Sanders S, Sergeant TJ, Simmonds M, Smith F, Squares R, Thurston S, Walker D, White B, Zuiderwijk E, Churcher C, Quail MA, Cowman AF, Turner CM, Rajandream MA, Kocken CH, Thomas AW, Newbold CI, Barrell B, Berriman M. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature. 2008;455:799–803. - PMC - PubMed
    1. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298:129–149. - PubMed
    1. Schuster SC. Next-generation sequencing transforms today's biology. Nat Methods. 2008;5:16–18. - PubMed

Publication types

Substances