Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 21;17(35):22784-98.
doi: 10.1039/c5cp03975d. Epub 2015 Aug 11.

Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles

Affiliations

Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles

Epsita Kar et al. Phys Chem Chem Phys. .

Abstract

Poly(vinylidene fluoride) (PVDF) nanocomposites are recently gaining importance due to their unique dielectric and electroactive responses. In this study, GeO2 nanoparticles/PVDF and SiO2 nanoparticles/PVDF nanocomposite films were prepared by a simple solution casting technique. The surface morphology and structural properties of the as-prepared films were studied by X-ray diffraction, scanning electron microscopy, and FT-IR spectroscopy techniques. The studies reveal that the incorporation of GeO2 or SiO2 nanoparticles leads to an enhancement in the electroactive β phase fraction of PVDF due to the strong interactions between the negatively charged nanoparticle surface and polymer. Analysis of the thermal properties of the as-prepared samples also supports the increment of the β phase fraction in PVDF. Variation of dielectric constant, dielectric loss, and ac conductivity with frequency and loading fraction of the nanoparticles were also studied for all the as-prepared films. Dielectric constant of the nanocomposite films increases with increasing nanofiller concentration in PVDF. 15 mass% SiO2-loaded PVDF film shows the highest dielectric constant, which can be attributed to the smaller size of SiO2 nanoparticles and the homogeneous and discrete dispersion of SiO2 nanoparticles in PVDF matrix.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources