Mechanical ventilation with heliox in an animal model of acute respiratory distress syndrome
- PMID: 26266912
- PMCID: PMC4513042
- DOI: 10.1186/2197-425X-2-8
Mechanical ventilation with heliox in an animal model of acute respiratory distress syndrome
Abstract
Background: Heliox has a lower density and higher diffusion capacity compared to oxygen-in-air. We hypothesized that heliox ventilation allows for a reduction in minute volume ventilation and inspiratory pressures needed for adequate gas exchange in an animal model of an acute lung injury.
Methods: After intratracheal instillation of lipopolysaccharide (10 mg/kg), adult rats were randomized to ventilation with either a gas mixture of helium/oxygen (50:50%) or oxygen/air (50:50%). They were mechanically ventilated according to the ARDSnet recommendations with tidal volumes of 6 ml/kg and monitored with a pneumotachometer. Bronchoalveolar lavage fluid was analyzed for markers of lung injury, and embedded lung sections were histologically scored for lung injury.
Results: Heliox limited the increase in driving pressures needed to achieve preset tidal volumes, with a concomitant decrease in loss of compliance. Heliox did neither allow for reduced minute volume ventilation in this model nor improve gas exchange. Also, heliox did not reduce lung injury.
Conclusions: Heliox modestly improved respiratory mechanics but did not improve lung injury in this rat model of acute respiratory distress syndrome.
Figures



References
-
- Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Ribeiro Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–354. doi: 10.1056/NEJM199802053380602. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources