Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Nov;91(6):1332-9.
doi: 10.1111/php.12509. Epub 2015 Sep 15.

Selective Activation of C=C Bond in Sustainable Phenolic Compounds from Lignin via Photooxidation: Experiment and Density Functional Theory Calculations

Affiliations

Selective Activation of C=C Bond in Sustainable Phenolic Compounds from Lignin via Photooxidation: Experiment and Density Functional Theory Calculations

Morgan Zielinski Goldberg et al. Photochem Photobiol. 2015 Nov.

Abstract

Lignocellulosic biomass can be converted to high-value phenolic compounds, such as food additives, antioxidants, fragrances and fine chemicals. We investigated photochemical and heterogeneous photocatalytic oxidation of two isomeric phenolic compounds from lignin, isoeugenol and eugenol, in several nonprotic solvents, for the first time by experiment and the density functional theory (DFT) calculations. Photooxidation was conducted under ambient conditions using air, near-UV light and commercial P25 TiO2 photocatalyst, and the products were determined by TLC, UV-Vis absorption spectroscopy, HPLC-UV and HPLC-MS. Photochemical and photocatalytic oxidation of isoeugenol proceeds via the mild oxidative "dimerization" to produce the lignan dehydrodiisoeugenol (DHDIE), while photooxidation of eugenol does not proceed. The DFT calculations suggest a radical stepwise mechanism for the oxidative "dimerization" of isoeugenol to DHDIE as was calculated for the first time.

PubMed Disclaimer

Publication types