Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep;66(3):604-16.
doi: 10.1161/HYPERTENSIONAHA.115.05430. Epub 2015 Jul 27.

Neuron-Specific Tumor Necrosis Factor Receptor-Associated Factor 3 Is a Central Regulator of Neuronal Death in Acute Ischemic Stroke

Affiliations

Neuron-Specific Tumor Necrosis Factor Receptor-Associated Factor 3 Is a Central Regulator of Neuronal Death in Acute Ischemic Stroke

Jun Gong et al. Hypertension. 2015 Sep.

Abstract

Neuronal death after ischemic stroke involves multiple pathophysiological events, as well as a complex molecular mechanism. Inhibiting a single therapeutic target that is involved in several ischemic signaling cascades may be a promising strategy for stroke management. Here, we report the versatile biological roles of tumor necrosis factor receptor-associated factor 3 (TRAF3) in ischemic stroke. Using several genetically manipulated mouse strains, we also demonstrated that TRAF3 inhibition can be neuroprotective. TRAF3 expression, which is robustly induced in response to ischemia/reperfusion (I/R) injury, was detected in neurons. Overexpression of TRAF3 in neurons led to aggravated neuronal loss and enlarged infarcts; these effects were reversed in TRAF3-knockout mice. Neuronal TRAF3 also contributed to c-Jun kinase-, nuclear factor κB- and Rac-1-induced neuronal death, inflammation, and oxidative stress. Mechanistically, we showed that TRAF3 interacts with transforming growth factor-β-activated kinase 1 (TAK1) and potentiates phosphorylation and activation of TAK1. Phosphorylated TAK1 sequentially initiated activation of nuclear factor κB, Rac-1/NADPH oxidase, and c-Jun kinase/c-Jun signaling cascades. Using a combination of adenoviruses encoding dominant-negative TAK1 and the TAK1 inhibitor 5Z-7-oxozeaenol, we demonstrated that the TRAF3-mediated activation of ischemic cascades was TAK1-dependent. More importantly, the adverse phenotypes observed in TRAF3-overexpressing mice were completely reversed when the TRAF3-TAK1 interaction was prevented. Therefore, we have shown that TRAF3 is a central regulator of ischemic pathways, including nuclear factor κB, Rac-1, and c-Jun kinase signaling, via its interaction with and activation of TAK1. Furthermore, certain components of the TRAF3-TAK1 signaling pathway are potentially promising therapeutic targets in ischemic stroke.

Keywords: TAK1 MAPKKK; TNF receptor-associated factor 3; inflammation; oxidative stress; stroke.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances